Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-24T02:24:41.443Z Has data issue: false hasContentIssue false

An Evaluation of Two Novel Cultivation Tools

Published online by Cambridge University Press:  20 January 2017

Glenn J. Evans*
Affiliation:
Department of Horticulture, Cornell University, Ithaca, NY 14853
Robin R. Bellinder
Affiliation:
Department of Horticulture, Cornell University, Ithaca, NY 14853
Russell R. Hahn
Affiliation:
Department of Crop and Soil Science, Cornell University
*
Corresponding author's E-mail: gje2@cornell.edu

Abstract

Cultivation is a critical component of organic weed management and has relevance in conventional farming. Limitations with current cultivation tools include high costs, limited efficacy, and marginal applicability across a range of crops, soil types, soil moisture conditions, and weed growth stages. The objectives of this research were to compare the weed control potential of two novel tools, a block cultivator and a stirrup cultivator, with that of a conventional S-tine cultivator, and to evaluate crop response when each tool was used in pepper and broccoli. Block and stirrup cultivators were mounted on a toolbar with an S-tine sweep. In 2008, the tripart cultivator was tested in 20 independently replicated noncrop field events. Weed survival and reemergence data were collected from the cultivated area of each of the three tools. Environmental data were also collected. A multivariable model was created to assess the importance of cultivator design and environmental and operational variables on postcultivation weed survival. Additional trials in 2009 evaluated the yield response of pepper and broccoli to interrow cultivations with each tool. Cultivator design significantly influenced postcultivation weed survival (P < 0.0001). When weed survival was viewed collectively across all 20 cultivations, both novel cultivators significantly increased control. Relative to the S-tine sweep, the stirrup cultivator reduced weed survival by about one-third and the block cultivator reduced weed survival by greater than two-thirds. Of the 11 individually assessed environmental and operational parameters, 7 had significant implications for weed control with the sweep; 5 impacted control with the stirrup cultivator, and only 1 (surface weed cover at the time of cultivation) influenced control with the block cultivator. Crop response to each cultivator was identical. The block cultivator, because of its increased effectiveness and operational flexibility, has the potential to improve interrow mechanical weed management.

La labranza es un componente crítico del manejo orgánico de malezas y tiene relevancia en la agricultura convencional. Las limitaciones de las herramientas de labranza actuales incluyen: altos costos, eficacia limitada y aplicabilidad marginal entre una variedad de cultivos, tipos y condiciones de humedad del suelo y las etapas de crecimiento de las malezas. Los objetivos de esta investigación fueron: 1) comparar el control potencial de malezas de dos nuevas herramientas (un cultivador de bloque y un cultivador de estribo), con un cultivador convencional de dientes pequeños y 2) evaluar la respuesta del cultivo cuando cada herramienta fue usada en pimiento y brócoli. Cultivadores de bloque y de estribo se instalaron en una barra de herramientas con una barredora de dientes pequeños. En 2008, este cultivador de tres partes se probó en campos sin cultivo, con 20 eventos/réplicas independientes. Los datos de supervivencia y re-emergencia de la maleza se recolectaron para cada una de las tres herramientas y también se recolectó información ambiental. Se creó un modelo multivariado para evaluar la importancia del diseño del cultivador, así como las variables ambientales y operacionales, en la supervivencia de las malezas después de la labranza. Ensayos adicionales en 2009 evaluaron la respuesta del rendimiento del pimiento y brócoli a la labranza entre-líneas con cada herramienta. El diseño de la herramienta de labranza impactó significativamente la supervivencia de la maleza (P<0.0001). Cuando la supervivencia de la maleza fue observada colectivamente entre todos los 20 eventos, los dos nuevos cultivadores mejoraron significativamente el control. En comparación con la barredora de dientes pequeños, el cultivador de estribo redujo la supervivencia de la maleza en cerca de un tercio, y el de bloque, redujo la supervivencia de las malezas en más de dos tercios. De los once parámetros ambientales y operacionales evaluados individualmente, siete tuvieron implicaciones significativas para el control de malezas con el barrido; cinco impactaron el control con el cultivador de estribo, y solamente uno (cobertura de la superficie con malezas al momento del cultivo), influyó en el control con el cultivador de bloque. La respuesta del cultivo a cada cultivador fue idéntica. Debido al aumento en la eficacia y flexibilidad operativa, el cultivador de bloque tiene potencial para mejorar el manejo mecánico de malezas entre líneas.

Type
Weed Management—Techniques
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Baerveldt, S. and Ascard, J. 1999. Effect of soil cover on weeds. Biol. Agric. Hort. 17:101111.CrossRefGoogle Scholar
Ball, B. 2006. Mechanical weeding effects on soil structure under organic vegetables. Odense, Denmark. Joint Organic Congress. http://www.orgprints.org/7490/. Accessed: September 23, 2009.Google Scholar
Bond, W., Turner, R. J., and Davies, G. 2007. A review of mechanical weed control. Coventry, UK HDRA: The Organic Organization. Pp. 123.Google Scholar
Bowman, G., ed. 1997. Steel in the field: A farmer's guide to weed management tools. Beltsville, MD Sustainable Agriculture Network. 128 p.Google Scholar
Colquhoun, J. and Bellinder, R. R. 1997. New cultivation tools for mechanical weed control in vegetables. Ithaca, NY Cornell University Cooperative Extension Publication, IPM fact sheet 102FSNCT. Pp. 23.Google Scholar
Colquhoun, J. B., Bellinder, R. R., and Kirkwyland, J. J. 1999. Efficacy of mechanical cultivation with and without herbicides in broccoli (Brassica oleracea), snap bean (Phaseolus vulgaris), and sweet corn (Zea mays). Weed Technol. 13:244252.CrossRefGoogle Scholar
Cousens, R. and Moss, S. R. 1990. A model of the effects of cultivation on the vertical distribution of weed seeds within the soil. Weed Res. 30:6170.CrossRefGoogle Scholar
Currie, B. W. 1916. The tractor and its influence upon the agricultural implement industry. Philadelphia, PA Curtis. 228 p.Google Scholar
Dexter, A. R. 2004. Soil physical quality: Part II. Friability, tillage, tilth and hard-setting. Geoderma 120:215225.Google Scholar
Dexter, A. R., Horn, R., and Kemper, W. D. 1988. Two mechanisms for age-hardening of soil. J. Soil Sci. 39:163175.Google Scholar
Horn, R. 1993. Mechanical properties of structured unsaturated soils. Soil Technol. 6:4775.Google Scholar
Horn, R. and Dexter, A. R. 1989. Dynamics of soil aggregation in an irrigated desert loess. Soil Tillage Res. 13:253266.Google Scholar
Kooistra, M. J. and Tovey, N. K. 1994. Effects of compaction on soil microstructure. Pages 91111 in Soane, B. D. and van Ouwerkerk, C., eds. Soil compaction in crop production: Developments in agricultural engineering. Amsterdam Elsevier.CrossRefGoogle Scholar
Kouwenhoven, J. K. and Terpstra, R. 1979. Sorting action of tines and tine like tools in the field. J. Agric. Eng. Res. 24:95113.Google Scholar
Kurstjens, D. A. G. and Perdok, U. D. 2000. The selective soil covering mechanism of weed harrows on sandy soil. Soil Tillage Res. 55:193206.Google Scholar
McKyes, E. and Maswaure, J. 1997. Effect of design parameters on flat tillage tools on loosening of a clay soil. Soil Tillage Res. 43:195204.Google Scholar
Michel, J., Fornstrom, K. J., and Boreli, J. 1985. Energy requirements for two tillage systems for irrigated sugar beets, dry beans and corn. Trans. ASAE 28:17311735.CrossRefGoogle Scholar
Milberg, P., Andersson, L., and Noronha, A. 1996. Seed germination after short-duration light exposure: Implications for the photo-control of weeds. J. Appl. Ecol. 33:14691478.Google Scholar
Mohler, C. L. 2001. Mechanical management of weeds. Pages 139209 in Liebman, M., Mohler, C. L. and Staver, C. P., eds. Ecological management of agricultural weeds. New York Cambridge University Press.Google Scholar
Mohler, C., DiTommaso, A., and Joslin, K. R. M. 2000. The effect of soil tilth on weed control by cultivation. Toward Sustainability Foundation Report. http://www.organic.cornell.edu/research/tsfsumms/organicpdfs/3tilthcult1.pdf. Accessed November 3, 2009.Google Scholar
Mullins, C. E., Young, I. M., Bengough, A. G., and Ley, G. J. 1987. Hard-setting soils. Soil Use Manag. 3:7983.Google Scholar
Parker, P. M. 2008. The 2009–2014 world outlook for farm front and rear mounted corn- and cotton-type shank and sweep cultivators. San Diego, CA ICON Group International. 202 p.Google Scholar
Pons, T. L. 1992. Seed responses to light. Pages 259284 in Fenner, M., ed. Seeds: The ecology of regeneration in plant communities. Wallingford, UK CAB International.Google Scholar
Pullen, D. W. M. and Cowell, P. A. 1997. An evaluation of the performance of mechanical weeding mechanisms for use in high speed inter-row weeding of arable crops. J. Agric. Eng. Res. 67:2734.Google Scholar
Rasmussen, J. 1992. Testing harrows for mechanical control of annual weeds in agricultural crops. Weed Res. 32:267274.Google Scholar
Rasmussen, J. 1993. Can high densities of competitive weeds be controlled efficiently by harrowing or hoeing in agricultural crops? Pages 8589 in Communications of the 4th International Conference I.F.O.A.M. France Non-Chemical Weed Control.Google Scholar
Rasmussen, J., Norremark, M., and Bibby, B. M. 2007. Assessment of leaf cover and crop soil cover in weed harrowing research using digital images. Weed Res. 47:299310.CrossRefGoogle Scholar
Roberts, H. A. and Dawkins, P. A. 1967. Effect of cultivation on the numbers of viable weed seeds in the soil. Weed Res. 7:290301.Google Scholar
Ryan, M., Duh, S., Wilson, D., and Hepperly, P. 2007. The skinny on a big problem…weeds. http://www.newfarm.org/depts/weeds/features/1007/survey.shtml. Accessed September 23, 2009.Google Scholar
Terpstra, R. and Kouwenhoven, J. K. 1981. Inter-row and intra-row weed control with a hoe ridger. J. Agric. Eng. Res. 26:127134.CrossRefGoogle Scholar
Tillet, N. D., Hague, T., Grundy, A. C., and Dedousis, A. P. Biosyst. Eng. Mechanical within-row weed control for transplanted crops using computer vision. 99:171178.Google Scholar
Toukura, Y., Devee, E., and Hongo, A. 2006. Uprooting and shearing resistance in the seedlings of four weedy species. Weed Biol. Manag. 6:3543.Google Scholar
Upadhyaya, S. K., Williams, T. H., Kemble, L. J., and Collins, N. E. 1984. Energy requirements for chiseling in coastal plain soils. Trans. ASAE 27:16431649.CrossRefGoogle Scholar
Van der Weide, R. and Kurstjens, D. 1996. Plant morphology and selective harrowing., Pages 11 in Physical Weed Control, 2nd EWRS Workshop.Google Scholar