Skip to main content Accessibility help
×
Home
Hostname: page-component-846f6c7c4f-7rmfg Total loading time: 0.17 Render date: 2022-07-07T11:56:21.835Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Activity of Florpyrauxifen-benzyl on Fall Panicum (Panicum dichotomiflorum Michx.) and Nealley’s Sprangletop (Leptochloa nealleyi Vasey)

Published online by Cambridge University Press:  13 September 2018

Gustavo M. Teló
Affiliation:
Post-Doctoral Researcher, School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
Eric P. Webster*
Affiliation:
Professor, School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
Benjamin M. McKnight
Affiliation:
Post-Doctoral Researcher, School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
David C. Blouin
Affiliation:
Professor, Department of Experimental Statistics, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
Samer Y. Rustom Jr
Affiliation:
Graduate Assistant, School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
*
Author for correspondence: Eric P. Webster, School of Plant, Environmental, and Soil Science, Louisiana State University Agricultural Center, Baton Rouge, LA 70803 (E-mail: ewebster@agcenter.lsu.edu)

Abstract

A glasshouse study was established at Louisiana State University campus in Baton Rouge, LA, to evaluate the control of fall panicum and Nealley’s sprangletop treated with florpyrauxifen-benzyl. Florpyrauxifen was applied at 30 g ai ha–1 to each grass species at the three- to four-leaf and one- to two-tiller stages of growth. At 21 d after treatment (DAT), fall panicum control was 91% when treated with florpyrauxifen at the three- to four-leaf stage, and Nealley’s sprangletop control was 78% to 82%, regardless of application timing 21 DAT. Leaf number, tiller number, plant height, and plant fresh weight were reduced when fall panicum and Nealley’s sprangletop were treated with florpyrauxifen. This information can be useful for developing weed management strategies with this herbicide for rice production, and it provides an additional mode of action to help manage and/or delay the development of herbicide-resistant weeds.

Type
Weed Management-Major Crops
Copyright
© Weed Science Society of America, 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adcock, TE, Banks, PA (1991) Effects of preemergence herbicides on the competitiveness of selected weeds. Weed Sci 39:5456 Google Scholar
Bergeron, EA (2017) Nealley’s sprangletop (Leptochloa nealleyi Vasey) management and interference in rice production. Masters thesis. Baton Rouge, LA: Louisiana State University. 64 pGoogle Scholar
Bergeron, EA, Webster, EP, McKnight, BM, Rustom, SY Jr (2015) Evaluation of herbicides for Nealley’s sprangletop (Leptochloa nealleyi) control. http://www.cbai2015.com.br/docs/trab-2-6875-365.pdf. Accessed: March 15, 2018Google Scholar
Carlson, T.P., Webster, EP, Salassi, ME, Bond, JA, Hensley, JB, Blouin, DC (2012) Economic evaluations of imazethapyr rates and timings on rice. Weed Technol. 26:2428 CrossRefGoogle Scholar
Carmer, SG, Nyuist, WE, Walker, WM (1989) Least significant differences for combined analysis of experiments with two or three factor treatment designs. Agron J 81:665672 CrossRefGoogle Scholar
Epp, JB, Alexander, AL, Balko, TW, Buysse, AM, Brewster, WK, Bryan, K, Daeuble, JF, Fields, SC, Gast, RE, Green, RA, Irvine, NM, Lo, WC, Lowe, CT, Renga, JM, Richburg, JS, Ruiz, JM, Satchivi, NM, Schmitzer, PR, Siddall, TL, Webster, JD, Weimer, MR, Whiteker, GT, Yerkes, CN (2016) The discovery of ArlyexTM active and RinskorTM active: two novel auxin herbicides. J Bioorg Med Chem 24:362371 CrossRefGoogle ScholarPubMed
Fausey, JC, Renner, KA (1997) Germination, emergence, and growth of giant foxtail (Setaria faberi) and fall panicum (Panicum dichotomiflorum). Weed Sci 45:423425 Google Scholar
Fernald, ML (1950) Gray’s Manual of Botany. 8th edn. New York, NY: American Book Co. 1632p Google Scholar
Grossmann, K (2010) Auxin herbicides: current status of mechanism and mode of action. Pest Manag Sci 66:113120 Google ScholarPubMed
Grotkopp, E, Rejmánek, M (2007) High seedling relative growth rate and specific leaf area are traits of invasive species: phylogenetically independent contrasts of woody angiosperms. Am J Bot 94:526532 CrossRefGoogle ScholarPubMed
Hager, AG, Wax, LM, Bollero, GA, Stroller, EW (2003) Influence of diphenylether herbicide application rate and timing on common waterhemp (Amaranthus rudis) control in soybean (Glycine max). Weed Technol 17:1420 CrossRefGoogle Scholar
Hitchcock, AS (1950) Manual of the Grasses of the United States. 2nd edn. Volumes 1 and 2. Washington, DC: Dover Publications, Inc. 1,051 pGoogle Scholar
Horak, MJ, Loughin, TM (2000) Growth analysis of four Amaranthus species. Weed Sci 48:347355 CrossRefGoogle Scholar
Kim, DS, Brain, P, Marshall, EJP, Caseley, JP (2002) Modelling herbicide dose and weed density effects on crop:weed competition. Weed Research 42:113 CrossRefGoogle Scholar
McKnight, BM, Webster, EP, Blouin, DC (2018) Benzobicyclon activity on common Louisiana rice weeds. Weed Technol 32:314318 CrossRefGoogle Scholar
Miller, MR, Norsworthy, JK (2018) Florpyrauxifen-benzyl weed control spectrum and tank-Mix compatibility with other commonly applied herbicides in rice. Weed Technol 32:319325 CrossRefGoogle Scholar
Norsworthy, JK, Ward, SM, Shaw, DR, Llewellyn, RS, Nichols, RL, Webster, TM, Bradley, KW, Frisvold, G, Powles, SB, Burgos, NR, Witt, WW, Barrett, M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:3162 CrossRefGoogle Scholar
Perry, DH, Ellis, AT, Langston, VB, Lassiter, R, Thompson, GD, Viator, RP, Walton, LC, Weimer, MR (2015) Utility of a new arylpicolinate herbicide from Dow Agrosciences in U.S. mid-south rice. Weed Sci Soc Am Abst 55:204 http://wssaabstracts.com/public/30/abstract-204.html. Accessed: March 15, 2018Google Scholar
SAS Institute (2013) Base SAS 9.4 Procedures Guide. Cary, NC: SAS Institute Google Scholar
Smith, RJ (1968) Weed competition in rice. Weed Sci 16:252255 Google Scholar
Smith, RJ (1983) Competition of bearded sprangletop (Leptochloa fascicularis) with rice (Oryza sativa). Weed Sci 31:120123 Google Scholar
Smith, RJ Jr (1988) Weed thresholds in southern U.S. rice (Oryza sativa). Weed Technol 3:232241 CrossRefGoogle Scholar
[USDA] Natural Resources Conservation Service (2006) Plant guide. Fall Panicgrass Panicum dichotomiflorum Michx. https://plants.usda.gov/plantguide/pdf/pg_padi.pdf. Accessed: March 15, 2018Google Scholar
Webster, EP (2014) Weed management. Pages 54–81 in Saichuk J, ed., Louisiana Rice Production Handbook. Baton Rouge, LA: Louisiana State University AgCenter Pub. 2321Google Scholar
Webster, EP, Carlson, TP, Salassi, ME, Hensley, JB, Blouin, DC (2012) Imazethapyr plus residual herbicide programs for imidazolinone-resistant rice. Weed Technol. 26:410416 CrossRefGoogle Scholar
Weimer, MR, Yerkes, CN, Schmitzer, PR, Mann, RK (2015) Introduction to a new arylpicolinate herbicide from Dow Agrosciences with utility in rice and other crops. Weed Sci Soc Am Abst 55:201 http://wssaabstracts.com/public/30/abstract-201.html. Accessed March 15, 2018Google Scholar
Zhang, W, Webster, EP, Lanclos, DY, Geaghan, JP (2003) Effect of weed interference duration and weed-free period on glufosinate-resistant rice (Oryza sativa). Weed Technol 17:876880 CrossRefGoogle Scholar
2
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Activity of Florpyrauxifen-benzyl on Fall Panicum (Panicum dichotomiflorum Michx.) and Nealley’s Sprangletop (Leptochloa nealleyi Vasey)
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Activity of Florpyrauxifen-benzyl on Fall Panicum (Panicum dichotomiflorum Michx.) and Nealley’s Sprangletop (Leptochloa nealleyi Vasey)
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Activity of Florpyrauxifen-benzyl on Fall Panicum (Panicum dichotomiflorum Michx.) and Nealley’s Sprangletop (Leptochloa nealleyi Vasey)
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *