Skip to main content Accessibility help

Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow

  • Robert E. Blackshaw, James R. Moyer (a1), Ray C. Doram (a1) and A. Lyle Boswell (a1)


Improved fallow systems are needed to reduce the negative effects of increased soil erosion and reduced soil quality. Field experiments were conducted to determine weed suppression attained with yellow sweetclover grown as a green manure fallow replacement crop. Yellow sweetclover was undersown in field pea, flax, or Indian mustard and then killed in June of the following fallow year. Living yellow sweetclover competed strongly with weeds during the first fall and spring of fallow. Weed biomass accounted for <1 to 12% of the total plant biomass when yellow sweetclover was terminated in June. Yellow sweetclover residues remaining after termination of growth continued to provide excellent weed suppression. Weed densities in April before planting the succeeding wheat crop were 75 to 97% lower in yellow sweetclover than in untreated fallow treatments. Yellow sweetclover controlled the perennial weeds dandelion and perennial sowthistle, as well as the annuals kochia, flixweed, Russian thistle, and downy brome. Weed suppression was similar whether yellow sweetclover was harvested as hay or its residues were incorporated or left on the soil surface, suggesting that a portion of the weed suppression effect may be due to allelopathic compounds being released from decomposing yellow sweetclover. Results will be used to develop more sustainable agronomic practices in regions where fallow is still widely employed.


Corresponding author

Corresponding author. Agriculture and Agri-Food Canada, Lethbridge Research Centre, P.O. Box 3000, Lethbridge, AB, Canada T1J 4B1;


Hide All
Aase, J. K. and Pikul, J. L. Jr. 1995. Crop and soil response to long-term tillage practices in the northern Great Plains. Agron. J. 87:652–256.
Al-Khatib, K., Libbey, C., and Boydston, R. 1997. Weed suppression with Brassica green manure crops in green pea. Weed Sci. 45:439445.
Anonymous. 1997. Sweetclover Production in Western Canada. Ottawa, ON: Agriculture Canada publication 1613. 14 p.
Badaruddin, M. and Meyer, D. W. 1990. Green-manure legume effects on soil nitrogen, grain yield, and nitrogen nutrition of wheat. Crop Sci. 30:819825.
Biederbeck, V. O., Bouman, O. T., Looman, J., Slinkard, A. E., Bailey, L. D., Rice, W. A., and Janzen, H. H. 1993. Productivity of four annual legumes as green manure in dryland cropping systems. Agron. J. 85:10351043.
Blackshaw, R. E. and Lindwall, C. W. 1995. Management systems for conservation fallow on the southern Canadian prairies. Can. J. Soil Sci. 75:9399.
Blackshaw, R. E., Moyer, J. R., Doram, R. C., Boswell, A. L., and Smith, E. G. 2001. Merits of biennial sweetclover (Melilotus officinalis) as a fallow replacement in semi-arid cropping systems. Agron. J. In press.
Boydston, R. and Hang, A. 1995. Rapeseed (Brassica napus) green manure crop suppresses weeds in potato (Solanum tuberosum). Weed Technol. 9:669675.
Chew, F. S. 1988. Biological effects of glucosinolates. Pages 155181 In Cutler, H. G., ed. Biologically Active Natural Products: Potential Use in Agriculture. Washnigton, DC: American Chemical Society Symposium series 380.
Cochran, V. L., Elliot, L. F., and Papendick, R. L. 1977. The production of phytotoxins from surface crop residues. Soil Sci. Soc. Am. J. 41:903908.
Enache, A. J. and Ilnicki, R. D. 1990. Weed control by subterranean clover used as a living mulch. Weed Technol. 4:534538.
Foster, R. K. 1990. Effect of tillage implement and date of sweetclover incorporation on available soil N and succeeding spring wheat yields. Can. J. Plant Sci. 70:269277.
Guenzi, W. D. and McCalla, T. M. 1962. Inhibition of germination and seedling development by crop residues. Soil Sci. Soc. Am. Proc. 26:456458.
Holt, J. S. 1995. Plant responses to light: a potential tool for weed management. Weed Sci. 43:474482.
Ingham, J. L. 1978. Phytoalexin production by high- and low-coumarin cultivars of Melilotus alba and Melilotus officinalis . Can. J. Bot. 56:223233.
Larney, F. J., Lindwall, C. W., Izaurralde, R. C., and Moulin, A. P. 1994. Tillage systems for soil and water conservation on the Canadian prairies. Pages 305328 In Carter, M. R., ed. Conservation Tillage in Temperate Agroecosystems. Boca Raton, FL: CRC Press.
Lehman, M. E. and Blum, U. 1997. Cover crop debris effects on weed emergence as modified by environmental factors. Allelopathy J. 4:6988.
Liebman, M. and Dyck, E. A. 1993. Crop rotation and intercropping strategies for weed management. Ecol. Appl. 3:92122.
McCalla, T. M. and Duley, F. L. 1948. Stubble mulch studies: effect of sweetclover extracts on corn germination. Science 108:163.
Moyer, J. R. and Huang, H. C. 1997. Effect of aqueous extracts of crop residues on germination and seedling growth of ten weed species. Bot. Bull. Acad. Sin. 38:131139.
Moyer, J. R., Roman, E. S., Lindwall, C. W., and Blackshaw, R. E. 1994. Weed management in conservation tillage systems for wheat production in North and South America. Crop Prot. 4:243259.
Pikul, J. L. Jr., Aase, J. K., and Cochran, V. L. 1997. Lentil green manure as fallow replacement in the semiarid northern Great Plains. Agron. J. 89:867874.
Power, J. F., ed. 1987. The Role of Legumes in Conservation Tillage Systems. Ankeny, IA: Soil and Water Conservation Society. pp. 2529.
Rice, E. L. 1984. Allelopathy. 2nd ed. New York: Academic Press. pp. 1819.
Rice, W. A., Olsen, P. E., Baley, L. D., Biederbeck, V. O., and Slinkard, A. E. 1993. The use of annual legume green-manure crops as a substitute for summerfallow in the Peace River region. Can. J. Soil Sci. 73:243252.
Schlegel, A. J. and Javlin, J. L. 1997. Green fallow for the central great plains. Agron. J. 89:762767.
Smika, D. E. 1990. Fallow management practices for wheat production in the Central Great Plains. Agron. J. 82:319323.
Sparrow, S. D., Cochran, V. L., and Sparrow, E. B. 1993. Herbage yield and nitrogen accumulation by seven legume crops on acid neutral soils in a subarctic environment. Can. J. Plant Sci. 73:10171045.
Spratt, E. D., Strain, J. H., and Gorby, B. J. 1975. Summer fallow substitutes for western Manitoba. Can. J. Plant Sci. 55:477484.
Steel, R.G.D. and Torrie, J. H. 1980. Principles and Procedures of Statistics. 2nd ed. New York: McGraw Hill. pp. 508510.
Stute, J. K. and Posner, J. L. 1993. Legume cover crop options for grain rotations in Wisconsin. Agron. J. 85:11281132.
Taylorson, R. B. and Borthwick, H. A. 1969. Light filtration by foliar canopies: significance for light controlled weed seed germination. Weed Sci. 17:4851.
Teasdale, J. R. 1996. Contribution of cover crops to weed management in sustainable agricultural systems. J. Prod. Agric. 9:475479.
Teasdale, J. R. and Daughtry, C.S.T. 1993. Weed suppression by live and desiccated hairy vetch. Weed Sci. 41:207212.
Turkington, R. A., Cavers, P. B., and Rempel, E. 1978. The Biology of Canadian Weeds. 29. Melilotus alba Desr. and M. officinalis (L.) Lam. Can. J. Plant Sci. 58:523537.
Vandermeer, J. 1989. The Ecology of Intercropping. Cambridge, Great Britain: Cambridge University Press.
Weston, L. A. 1996. Utilization of allelopathy for weed management in agroecosystems. Agron. J. 88:860866.
White, R. H., Worsham, D., and Blum, U. 1989. Allelopathic potential of legume debris and aqueous extracts. Weed Sci. 37:674679.
Zentner, R. P., Campbell, C. A., Biederbeck, V. O., and Selles, F. 1996. Indianhead black lentil and green manure for wheat rotations in the brown soil zone. Can. J. Plant Sci. 76:417422.


Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow

  • Robert E. Blackshaw, James R. Moyer (a1), Ray C. Doram (a1) and A. Lyle Boswell (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed