Skip to main content Accessibility help
×
Home

Seed Dormancy and Adaptive Seedling Emergence Timing in Giant Ragweed (Ambrosia trifida)

  • Brian J. Schutte (a1), Emilie E. Regnier (a1) and S. Kent Harrison (a1)

Abstract

Giant ragweed germination is delayed by both a physiological dormancy of the embryo (embryo dormancy) and an inhibitory influence of embryo-covering structures (covering structure-enforced [CSE] dormancy). To clarify the roles of embryo and CSE dormancy in giant ragweed seedling emergence timing, we conducted two experiments to address the following objectives: (1) determine changes in germinability for giant ragweed dispersal units (hereafter “involucres”) and their components under natural burial conditions, and (2) compare embryo and CSE dormancy alleviation and emergence periodicity between successional and agricultural populations. In Experiment 1, involucres were buried in crop fields at Columbus, OH, periodically excavated, and brought to the laboratory for dissection. Involucres, achenes, and embryos were then subjected to germination assays at 20 C. In Experiment 2, temporal patterns of seedling emergence were determined at a common burial site. Reductions in embryo and CSE dormancy were compared with controlled-environment stratification followed by germination assays at 12 and 20 C, temperatures representative of soil conditions in spring and summer. Results indicated that overwinter dormancy loss involved sequential reductions in embryo and CSE dormancy. CSE dormancy, which may limit potential for fatal germination during fall, was caused by the pericarp and/or embryo-covering structures within the pericarp. In Experiment 2, successional populations emerged synchronously in early spring, whereas agricultural populations emerged throughout the growing season. Levels of embryo dormancy were greater in the agricultural populations than the successional populations, but CSE dormancy levels were similar among populations. In 12 C germination assays, embryo dormancy levels were positively correlated with time required to reach 95% cumulative emergence (run 1: r = 0.81, P = 0.03; run 2: r = 0.76, P = 0.05). These results suggest that late-season emergence in giant ragweed involves high levels of embryo dormancy that prevent germination at low temperatures in spring.

Copyright

Corresponding author

Corresponding author's E-mail: bschutte@nmsu.edu

Footnotes

Hide All

Current address: Department of Entomology, Plant Pathology & Weed Science, New Mexico State University, Las Cruces, NM 88003.

Footnotes

References

Hide All
Abul-Fatih, H. A. and Bazzaz, F. A. 1979. Biology of Ambrosia trifida L. 2. Germination, emergence, growth and survival. New Phytol. 83:817827.
Ali-Rachedi, S., Bouinot, D., Wagner, M. H., Bonnet, M., Sotta, B., Grappin, P., and Jullien, M. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana . Planta. 219:479488.
Ballard, T. O., Foley, M. E., and Bauman, T. T. 1996. Germination, viability, and protein changes during cold stratification of giant ragweed (Ambrosia trifida L) seed. J. Plant Physiol. 149:229232.
Barthe, P., Garello, G., Bianco-Trinchant, J., and le Page-Degivry, M. T. 2000. Oxygen availability and ABA metabolism in Fagus sylvatica seeds. Plant Growth Regul. 30:185191.
Baskin, J. M. and Baskin, C. C. 2004. A classification system for seed dormancy. Seed Sci. Res. 14:116.
Bewley, J. D. and Black, M. 1994. Seeds Physiology of Development and Germination. 2nd ed. New York Plenum Press. Pp. 201220.
Bremer, K. 1994. Asteraceae: Cladistics and Classification. Portland, OR: Timber Press. 752 p.
Brown, M. L. and Brown, R. G. 1984. Herbaceous Plants of Maryland. College Park, MD University of Maryland. Pp. 987989.
Corbineau, F., Bianco, J., Garello, G., and Come, D. 2002. Breakage of Pseudotsuga menziesii seed dormancy by cold treatment as related to changes in seed ABA sensitivity and ABA levels. Physiol. Plantarum. 114:313319.
Davis, W. E. 1930. Primary dormancy, after-ripening, and the development of secondary dormancy in embryos of Ambrosia trifida . Am. J. Bot. 17:5876.
Ellery, A. J. and Chapman, R. 2000. Embryo and seed coat factors produce seed dormancy in capeweed (Arctotheca calendula). Aust. J. Agr. Res. 51:849854.
Finch-Savage, W. E. and Leubner-Metzger, G. 2006. Seed dormancy and the control of germination. New Phytol. 171:501523.
Gallandt, E. R. 2006. How can we target the weed seedbank? Weed Sci. 54:588596.
Gomez, K. A. and Gomez, A. A. 1984. Statistical Procedures for Agricultural Research, 2nd edition. New York John Wiley and Sons. Pp. 467471.
Grappin, P., Bouinot, D., Sotta, B., Miginiac, E., and Jullien, M. 2000. Control of seed dormancy in Nicotiana plumbaginifolia: post-imbibition abscisic acid synthesis imposes dormancy maintenance. Planta. 210:279285.
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Harrison, J. M. 2007. Seed size and burial effects on giant ragweed (Ambrosia trifida) emergence and seed demise. Weed Sci. 55:1622.
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Webb, J. E. 2001. Competition and fecundity of giant ragweed in corn. Weed Sci. 49:224229.
Hartnett, D. C., Hartnett, B. B., and Bazzaz, F. A. 1987. Persistence of Ambrosia trifida populations in old fields and responses to successional changes. Am. J. Bot. 74:12391248.
Hilhorst, H. W. M. and Karssen, C. M. 1992. Seed dormancy and germination: the role of abscisic-acid and gibberellins and the importance of hormone mutants. Plant Growth Regul. 11:225238.
Karlsson, L. M., Hidayati, S. N., Walck, J. L., and Milberg, P. 2005. Complex combination of seed dormancy and seedling development determine emergence of Viburnum tinus (Caprifoliaceae). Ann. Bot. 95:323330.
Kil, J. H., Shim, K. C., Park, S. H., Koh, K. S., Suh, M. H., Ku, Y. B., Suh, S. U., Oh, H. K., and Kong, H. Y. 2004. Distributions of naturalized alien plants in South Korea. Weed Technol. 18:14931495.
Leon, R. G. and Owen, M. D. K. 2004. Artificial and natural seed banks differ in seedling emergence patterns. Weed Sci. 52:531537.
Nurse, R. E., DiTommaso, A., and Ramirez, R. A. 2004. Planting date effects on the germinability and seedling vigour of Abutilon theophrasti (Malvaceae) seeds. Phytoprotection. 85:161168.
Pandey, A. K. and Dhakal, M. R. 2001. Phytomelanin in Compositae. Curr. Sci. 80:933940.
Peters, J. 2000. Tetrazolium Testing Handbook. Contrib. No. 29 to the Handbook on Seed Testing. Lincoln, NE Association of Official Seed Analysts. 21 p.
Rybnicek, O. and Jager, S. 2001. Ambrosia (ragweed) in Europe. Allergy Clin. Immunol. 13:6066.
Schabenberger, O. and Pierce, F. J. 2002. Contemporary Statistical Models for the Plant and Soil Sciences. New York CRC Press. Pp. 343345.
Schutte, B. J. 2007. Biology and Ecology of Ambrosia trifida L. Seedling Emergence. . Columbus, OH: The Ohio State University.164 p.
Schutte, B. J., Regnier, E. E., and Harrison, S. K. 2008a. The association between seed size and seed longevity among maternal families in Ambrosia trifida L. populations. Seed Sci. Res. 18:201211.
Schutte, B. J., Regnier, E. E., Harrison, S. K., Schmoll, J. T., Spokas, K., and Forcella, F. 2008b. A hydrothermal seedling emergence model for giant ragweed (Ambrosia trifida). Weed Sci. 56:555560.
Spokas, K. and Forcella, F. 2009. Software tools for weed seed germination modeling. Weed Sci. 57:216227.
Sprague, C. L., Wax, L. M., Hartzler, R. G., and Harrison, S. K. 2004. Variations in emergence patterns of giant ragweed biotypes from Ohio, Illinois, and Iowa. Page 60 in Proceedings of the 44th meeting of the Weed Science Society of America. (Weed Science Society of America, publisher).
Stoller, E. W. and Wax, L. M. 1974. Dormancy changes and fate of some annual weed seeds in soil. Weed Sci. 22:151155.
Vandelook, F. and Van Assche, J. A. 2008. Temperature requirements for seed germination and seedling development determine timing of seedling emergence of three monocotyledonous temperate forest spring geophytes. Ann. Bot. 102:865875.
Wareing, P. F. and Foda, H. A. 1957. Growth inhibitors and dormancy in Xanthium seed. Physiol. Plantarum. 10:266280.
Webster, T. M., Loux, M. M., Regnier, E. E., and Harrison, S. K. 1994. Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol. 8:559564.
Yoshioka, T., Takeru, G., Shusuke, K., Shigeru, S., and Teruyoshi, H. 2003. The regulation of thermoinhibition of seed germination in winter annual plants by abscisic acid. Pp. 217223 in Nicolas, G., Bradford, K. J., Pritchard, H. W., and Come, D., eds. The Biology of Seeds: Recent Research Advances. Proceedings of the 7th International Workshop on Seeds; Salamanca, Spain 2002. New York CABI Publishing.
Zar, J. H. 1999. Biostatistical Analysis. 4th ed. Upper Saddle River, NJ Prentice Hall. Pp. 437440.

Keywords

Seed Dormancy and Adaptive Seedling Emergence Timing in Giant Ragweed (Ambrosia trifida)

  • Brian J. Schutte (a1), Emilie E. Regnier (a1) and S. Kent Harrison (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.