Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T20:49:18.977Z Has data issue: false hasContentIssue false

RNA Synthesis as the Basis for EPTC and 2,4-D Antagonism

Published online by Cambridge University Press:  12 June 2017

C. E. Beste
Affiliation:
Dep. of Bot. and Plant Pathol., Purdue Univ., Lafayette, Indiana 47907
M. M. Schreiber
Affiliation:
Plant Sci. Res. Div., Agr. Res. Serv., U. S. Dept. of Agr., Purdue Univ., Lafayette, Indiana 47907

Abstract

Three-day-old soybean (Glycine max (L.) Merr., ‘Hawkeye 63′) hypocotyl segments (0.5 to 1.5 cm below the cotyledons) were utilized to evaluate the effects of the antagonistic interaction of S-ethyl dipropylthiocarbamate (EPTC) and (2,4-dichlorophenoxy)acetic acid (2,4-D) on growth and nucleic acid synthesis. EPTC inhibited growth and RNA synthesis in soybean tissue. The addition of 2,4-D with EPTC was antagonistic to EPTC inhibition of growth and caused an increase in total RNA synthesis. Analysis of soybean tissue nucleic acids by methylated-albumin-kieselguhr(MAK) column chromatography showed that EPTC inhibited ribosomal-RNA (r-RNA), DNA like RNA (D-RNA), and tenaciously-bound-RNA (TB-RNA) synthesis. The combination of 2,4-D with EPTC caused an increase in D-RNA and TB-RNA synthesis compared to the EPTC treatment alone. The 2,4-D-enhanced synthesis of D-RNA and TB-RNA in the presence of EPTC appears to be the basis of the antagonism between EPTC and 2,4-D. Preliminary analysis of r-RNA indicated that EPTC preferentially inhibited the synthesis of 18S r-RNA more than 25S r-RNA and that 2,4-D had no effect on this selective inhibition.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Beste, C. E. and Schreiber, M. M. 1970. Antagonistic interaction of EPTC and 2,4-D. Weed Sci. 18:484488.CrossRefGoogle Scholar
2. Bishop, D. H. L., Claybrook, J. R., and Spiegelman, S. 1967. Electrophoretic separation of viral nucleic acids on polyacrylamide gels. J. Mol. Biol. 26:373387.CrossRefGoogle ScholarPubMed
3. Chem, T., Seaman, D. E., and Ashton, F. M. 1968. Herbicidal action of molinate in barnyardgrass and rice. Weed Sci. 16:2831.CrossRefGoogle Scholar
4. Cherry, J. H. 1962. Nucleic Acid determination in storage tissues of higher plants. Plant Physiol. 37:670678.CrossRefGoogle ScholarPubMed
5. Cherry, J. H., Chroboczek, H., Carpenter, W. J. G., and Richmond, A. 1965. Nucleic acid metabolism in peanut cotyledons. Plant Physiol. 40:582587.CrossRefGoogle ScholarPubMed
6. Chroboczek, H. and Cherry, J. H. 1965. Production of messenger RNA during seed germination. Biochem. Biophys. Res. Commun. 20:774779.CrossRefGoogle ScholarPubMed
7. Hoffman, O. T. 1962. Chemical seed treatments as herbicidal antidotes. Weeds 10:322323.CrossRefGoogle Scholar
8. Holm, R. E., O'Brien, T. J., Key, J. L., and Cherry, J. R. 1970. The influence of auxin and ethylene on chromatindirected ribonucleic acid synthesis in soybean hypocotyl. Plant Physiol. 45:4145.CrossRefGoogle ScholarPubMed
9. Ingle, J. and Key, J. L. 1968. A re-evaluation of the fractionation of high molecular weight RNA by MAK chromatography. Biochem. Biophys. Res. Commun. 30:711716.CrossRefGoogle ScholarPubMed
10. James, C. S., Prendeville, G. N., Warren, G. F., and Schreiber, M. M. 1970. Interaction between herbicidal carbamates and growth regulators. Weed Sci. 18:137139.CrossRefGoogle Scholar
11. Key, J. L. 1969. Hormones and nucleic acid metabolism. Annu. Rev. Plant Physiol. 20:449474.CrossRefGoogle Scholar
12. Key, J. L. and Ingle, J. 1964. Requirement for the synthesis of DNA-like RNA for growth of excised plant tissue. Proc. Nat. Acad. Sci. U.S.A. 52:13821388.CrossRefGoogle ScholarPubMed
13. Key, J. L. and Ingle, J. 1968. RNA metabolism in response to auxin, p. 711722. In Wightman, F. and Setterfield, G., Biochemistry and Physiology of Plant Growth Substances. Runge Press, Ottawa.Google Scholar
14. Loening, U. 1967. The fractionation of high-molecular weight ribonucleic acid by polyacrylamide-gel electrophoresis. Biochem. J. 102:251257.CrossRefGoogle ScholarPubMed
15. Mandell, J. D. and Hershey, A. D. 1960. A fractionating column for analysis of nucleic acids. Anal. Biochem. 1:6677.CrossRefGoogle ScholarPubMed
16. Mann, J. D., Cota-Robles, E., Young, K. H., Pu, M., and Haid, H. 1967. Phenylurethane herbicides: Inhibitors of changes in metabolic state I. Botanical aspects. Biochim. Biophys. Acta 138:133139.CrossRefGoogle Scholar
17. Moreland, D. E., Malhotra, S. S., Gruenhagen, R. D., and Shokrah, E. H. 1969. Effects of herbicides on RNA and protein synthesis. Weed Sci. 17:556563.CrossRefGoogle Scholar
18. Pfeiffer, R. K., Barker, C., and Holmes, H. M. 1960. Factors affecting the selectivity of barban for the control of Avena fatua in wheat and barley. Proc. Brit. Weed Contr. Conf. 5:441452.Google Scholar
19. Prendeville, G. N., James, C. S., Eshel, Y., Warren, G. F., and Schreiber, M. M. 1969. Antagonistic responses with combinations of carbamate and growth regulator herbicides. Weed Sci. 17:307309.CrossRefGoogle Scholar
20. Trewavas, A. 1968. Relationship between plant growth hormones and nucleic acid metabolism. Progr. Phytochem. 1:113160.Google Scholar
21. Vanderhoef, L. N. and Key, J. L. 1968. Inhibition by kinetin of cell elongation and RNA synthesis in excised soybean hypocotyl. Plant Cell Physiol. 9:343351.Google Scholar
22. Yung, H. K. and Mann, J. D. 1966. Inhibition of nucleic acid synthesis in excised roots by barban. Plant Physiol. Suppl. 41:vivii.Google Scholar
23. Yung, H. K. and Mann, J. D. 1967. Inhibition of early steps in the gibberellin-activated synthesis of α-amylase. Plant Physiol. 42:195200.CrossRefGoogle ScholarPubMed