Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-19T06:32:20.066Z Has data issue: false hasContentIssue false

Response of a Chlorsulfuron-Resistant Biotype of Kochia scoparia to ALS Inhibiting Herbicides and Piperonyl Butoxide

Published online by Cambridge University Press:  12 June 2017

Chae Soon Kwon
Affiliation:
Dep. of Crop and Soil Sci., Michigan State Univ. E. Lansing, MI 48824
Donald Penner
Affiliation:
Dep. of Crop and Soil Sci., Michigan State Univ. E. Lansing, MI 48824

Abstract

Greenhouse and laboratory studies were conducted to determine kochia resistance to a spectrum of acetolactate synthase (E.C.4.13.18) (ALS)-inhibiting herbicides. The chlorsulfuron-resistant biotype plants were resistant to six herbicides: triflusulfuron, thifensulfuron, halosulfuron, imazamethabenz, chlorsulfuron, and nicosulfuron. But, the resistant biotypes showed sensitivity similar to the susceptible biotypes to three herbicides: metsulfuron, imazethapyr, and imazaquin. The resistant biotypes were slightly less sensitive to primisulfuron, chlorimuron, and flumetsulam than the sensitive biotypes. The I50 values for 50% inhibition of the ALS enzyme indicated that the resistant biotype was 22, 18, and 16 times more resistant to primisulfuron, chlorsulfuron, and thifensulfuron than the susceptible biotype. In contrast, the I50 ratios (resistant/susceptible) were 3, 2, and 1 for flumetsulam, nicosulfuron, and imazethapyr, respectively. The altered ALS enzyme system of the resistant biotype showed a differential response for the ALS-inhibiting herbicides. Addition of a mixed function oxidase inhibitor, piperonyl butoxide (PBO) at 2 kg ha−1, to primisulfuron and thifensulfuron increased visual injury and reduced plant height of the chlorsulfuron-sensitive kochia biotype plants. The addition of PBO to primisulfuron enhanced visual injury of the resistant biotype at low rates of primisulfuron.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1995 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

LITERATURE CITED

1. Attia, F. I., Shanahan, G. J., and Shipp, E. 1980. Synergism studies with organophosphorous resistant strains of the Indian meal moth. J. Econ. Entomol. 73:184185.CrossRefGoogle Scholar
2. Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224:14431445.Google Scholar
3. Devine, M. D., Maries, M. A. S., and Hall, L. M. 1991. Inhibition of acetolactate synthase in susceptible and resistant biotypes of Stellaria media . Pestic. Sci. 31:273280.Google Scholar
4. Friesen, L. F., Morrison, I. N., Rashid, A., and Devine, M. D. 1993. Response of a chlorsulfuron-resistant biotype of Kochia scoparia to sulfonylurea and alternative herbicides. Weed Sci. 41:100106.Google Scholar
5. Georghiou, G. P. 1986. The magnitude of the resistance problem. Page 1443 in Pesticide resistance: strategies and tactics for management. Natl. Acad. Press. Washington, DC.Google Scholar
6. Komives, T. and Dutka, F. 1980. On the mode of action of EPTC and its antidotes on corn. Cereal Res. Commun. 8:627633.Google Scholar
7. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265275.CrossRefGoogle ScholarPubMed
8. Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol. 4:163168.Google Scholar
9. O'Brien, R. D. 1967. Insecticides action and metabolism. Academic Press New York, NY, Chapter 10, Pyrethroids.Google Scholar
10. Powles, S. B. and Howat, P. D. 1990. Herbicide-resistant weeds in Australia. Weed Technol. 4:178185.Google Scholar
11. Primiani, M. M., Cotterman, J. C., and Saari, L. L. 1990. Resistance of kochia (Kochia scoparia) to sulfonylurea and imidazolinone herbicides. Weed Technol. 4:169172.CrossRefGoogle Scholar
12. Rathinasabapathi, B. and King, J. 1991. Herbicide resistance in Datura innoxia . Plant Physiol. 96:255261.CrossRefGoogle ScholarPubMed
13. Ray, T. B. 1984. Site of action of chlorsulfuron inhibition of valine and isoleucine biosynthesis in plants. Plant Physiol. 75:827831.Google Scholar
14. Reed, W. T., Saladini, J. L., Cotterman, J. C., Primiani, M. M., Saari, L. L. 1989. Resistance in weeds to sulfonylurea herbicides. Brighton Crop Protection Conf—Weeds:295300.Google Scholar
15. Rubin, B., Leavitt, J. R., Penner, D., and Saettler, A. W. 1980. Interaction of antioxidants with ozone and herbicide stress. Bull. Environ. Contain. Toxicol. 25:623629.CrossRefGoogle ScholarPubMed
16. Ryan, G. F. 1970. Resistance of common groundsel to simazine and atrazine. Weed Sci. 18:614616.Google Scholar
17. Saari, L. L., Cotterman, J. C., and Primiani, M. M. 1990. Mechanism of sulfonylurea herbicide resistance in the broadleaf weed, Kochia scoparia . Plant Physiol. 93:5561.CrossRefGoogle ScholarPubMed
18. Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.Google Scholar
19. Sivakumaran, K., Mulugeta, D., Fay, P. K., and Dyer, W. E. 1993. Differential herbicide response among sulfonylurea-resistant Kochia scoparia L. accessions. Weed Sci. 41:159165.Google Scholar
20. Westerfield, W. W. 1945. A colon metric determination of blood acetoin. J. Biol Chem. 161:495502.Google Scholar