Skip to main content Accessibility help

Resistance to very-long-chain fatty-acid (VLCFA)-inhibiting herbicides in multiple field-selected rigid ryegrass (Lolium rigidum) populations

  • David J. Brunton (a1), Peter Boutsalis (a2), Gurjeet Gill (a3) and Christopher Preston (a3)


Five populations of rigid ryegrass (Lolium rigidum Gaudin) from fields across cropping regions in southern Australia were suspected of having resistance to thiocarbamates, chloroacetamides, and sulfonylisoxazoline herbicides. Resistant (R) populations 375-14, 198-15, 16.2, EP162, RAC1, and A18 and two susceptible (S) populations (SLR4 and VLR1) were included in a dose–response study. All suspected R populations expressed resistance to one or all herbicides (thiocarbamates, chloroacetamides, and pyroxasulfone). Population 198-15 exhibited the highest LD50 to triallate (44.7-fold), prosulfocarb (45.7-fold), S-metolachlor (31.5-fold), and metazachlor (27.2-fold) compared with the S populations. Populations 198-15 and 375-14 were also resistant to pyroxasulfone (13.5- and 14.9-fold) compared with the S populations, as was population EP162. This study documents the first case of field-evolved resistance to thiocarbamate, chloroacetamide, and sulfonylisoxazoline herbicides in L. rigidum.


Corresponding author

Author for correspondence: David J. Brunton, Email:


Hide All
Ahmad-Hamdani, MS, Yu, Q, Han, HP, Cawthray, GR, Wang, SF, Powles, SB (2013) Herbicide resistance endowed by enhanced rates of herbicide metabolism in wild oat (Avena spp.). Weed Sci 61:5562
Beckie, HJ (2006) Herbicide-resistant weeds: management tactics and practices. Weed Technol 20:793814
Beckie, HJ, Tardif, FJ (2012) Herbicide cross resistance in weeds. Crop Prot 35:1528
Beckie, HJ, Warwick, SI, Sauder, CA (2012) Basis for herbicide resistance in Canadian populations of wild oat (Avena fatua). Weed Sci 60:1018
Boutsalis, P, Gill, GS, Preston, C (2012) Incidence of herbicide resistance in rigid ryegrass (Lolium rigidum) across southeastern Australia. Weed Technol 26:391398
Boutsalis, P, Gill, GS, Preston, C (2014) Control of rigid ryegrass in Australian wheat production with pyroxasulfone. Weed Technol 28:332339
Broster, J, Pratley, J (2006) A decade of monitoring herbicide resistance in Lolium rigidum in Australia. Animal Prod Sci 46:11511160
Brunton, DJ, Boutsalis, P, Gill, G, Preston, C (2018) Resistance to multiple PRE herbicides in a field-evolved rigid ryegrass (Lolium rigidum) population. Weed Sci 66:581585
Burnet, MW, Barr, AR, Powles, SB (1994) Chloroacetamide resistance in rigid ryegrass (Lolium rigidum). Weed Sci 42:153157
Busi, R, Gaines, TA, Vila-Aiub, MM, Powles, SB (2014) Inheritance of evolved resistance to a novel herbicide (pyroxasulfone). Plant Sci 217:127134
Busi, R, Gaines, TA, Walsh, MJ, Powles, SB (2012) Understanding the potential for resistance evolution to the new herbicide pyroxasulfone: field selection at high doses versus recurrent selection at low doses. Weed Res 52:489499
Busi, R, Porri, A, Gaines, TA, Powles, SB (2018) Pyroxasulfone resistance in Lolium rigidum is metabolism-based. Pest Biochem Physiol 148:7480
Busi, R, Powles, SB (2016) Cross-resistance to prosulfocarb plus S-metolachlor and pyroxasulfone selected by either herbicide in Lolium rigidum. Pest Manag Sci 72:16641672
Casida, JE, Gray, RA, Tilles, H (1974) Thiocarbamate sulfoxides: potent, selective, and biodegradable herbicides. Science 184:573574
Délye, C (2013) Unravelling the genetic bases of non-target-site-based resistance (NTSR) to herbicides: a major challenge for weed science in the forthcoming decade. Pest Manag Sci 69:176187
Délye, C (2005) Weed resistance to acetyl coenzyme A carboxylase inhibitors: an update. Weed Sci 53:728746
Délye, C, Jasieniuk, M, Le Corre, V (2013) Deciphering the evolution of herbicide resistance in weeds. Trends Genet 29:649658
Fuerst, EP (1987) Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides. Weed Technol 1:270277
Heap, I (2018) The International Survey of Herbicide Resistant Weeds. Accessed: February 28, 2017
Heap, I, Knight, R (1986) The occurrence of herbicide cross-resistance in a population of annual ryegrass, Lolium rigidum, resistant to diclofop-methyl. Aust J Agric Res 37:149156
Hubbell, JP, Casida, JE (1977) Metabolic fate of the N, N-dialkylcarbamoyl moiety of thiocarbamate herbicides in rats and corn. J Agric Food Chem 25:404–13
Kern, AJ, Colliver, CT, Maxwell, BD, Fay, PK, Dyer, WE (1996a) Characterization of wild oat (Avena fatua L) populations and an inbred line with multiple herbicide resistance. Weed Sci 44:847852
Kern, AJ, Peterson, DM, Miller, EK, Colliver, CC, Dyer, WE (1996b) Triallate resistance in Avena fatua L. is due to reduced herbicide activation. Pest Biochem Physiol 56:163173
Keshtkar, E, Mathiassen, SK, Moss, SR, Kudsk, P (2015) Resistance profile of herbicide-resistant Alopecurus myosuroides (black-grass) populations in Denmark. Crop Prot 69:8389
Kleemann, SG, Preston, C, Gill, GS (2016) Influence of management on long-term seedbank dynamics of rigid ryegrass (Lolium rigidum) in cropping systems of southern Australia. Weed Sci 64:303311
Lamoureux, GL, Shimabukuro, RH, Frear, DS (1991) Glutathione and glucoside conjugation in herbicide selectivity. Pages 227261 in Caseley, JC, Cussans, GW, Atkin, RK, eds. Herbicide Resistance in Weeds and Crops. 1st edn. Oxford, UK: Butterworth-Heinemann.
Malone, JM, Boutsalis, P, Baker, J, Preston, C (2014) Distribution of herbicide-resistant acetyl-coenzyme A carboxylase alleles in Lolium rigidum across grain cropping areas of South Australia. Weed Res 54:7886
Mangin, AR, Hall, LM, Beckie, HJ (2016) Triallate-resistant wild oat (Avena fatua L.): unexpected resistance to pyroxasulfone and sulfentrazone. Can J Plant Sci 97:2025.
Owen, MJ, Martinez, NJ, Powles, SB (2014) Multiple herbicide-resistant Lolium rigidum (annual ryegrass) now dominates across the Western Australian grain belt. Weed Res 54:314324
Owen, MJ, Walsh, MJ, Llewellyn, RS, Powles, SB (2007) Widespread occurrence of multiple herbicide resistance in Western Australian annual ryegrass (Lolium rigidum) populations. Aust J Agric Res 58:711718
Ritz, C, Baty, F, Streibig, JC, Gerhard, D (2015) Dose-response analysis using R. PLoS ONE 10:e0146021
Sakuma, M (1998) Probit analysis of preference data. Appl Entomol Zool 33:339347
Schwartz-Lazaro, LM, Norsworthy, JK, Scott, RC, Barber, LT (2017) Resistance of two Arkansas Palmer amaranth populations to multiple herbicide sites of action. Crop Prot 96:158163
Shimabukuro, RH (1975) Herbicide metabolism by glutathione conjugation in plants. Environ Qual Saf 4:140148
Tanetani, Y, Ikeda, M, Kaku, K, Shimizu, T, Matsumoto, H (2013) Role of metabolism in the selectivity of a herbicide, pyroxasulfone, between wheat and rigid ryegrass seedlings. J Pestic Sci 38:152156
Walsh, MJ, Fowler, TM, Crowe, B, Ambe, T, Powles, SB (2011) The potential for pyroxasulfone to selectively control resistant and susceptible rigid ryegrass (Lolium rigidum) biotypes in Australian grain crop production systems. Weed Technol 25:3037
Walsh, MJ, Powles, SB (2007) Management strategies for herbicide-resistant weed populations in Australian dryland crop production systems. Weed Technol 21:332338
Yu, Q, Han, H, Powles, SB (2008) Mutations of the ALS gene endowing resistance to ALS-inhibiting herbicides in Lolium rigidum populations. Pest Manag Sci 64:12291236
Yu, Q, Powles, S (2014) Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. Plant Physiol 166:11061118


Related content

Powered by UNSILO

Resistance to very-long-chain fatty-acid (VLCFA)-inhibiting herbicides in multiple field-selected rigid ryegrass (Lolium rigidum) populations

  • David J. Brunton (a1), Peter Boutsalis (a2), Gurjeet Gill (a3) and Christopher Preston (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.