Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:13:06.683Z Has data issue: false hasContentIssue false

Reducing herbicide runoff from agricultural fields with vegetative filter strips: a review

Published online by Cambridge University Press:  20 January 2017

S. A. Senseman
Affiliation:
Department of Soil & Crop Sciences, Texas Agricultural Experiment Station, Texas A&M University, College Station, TX 77843-2474
R. M. Zablotowicz
Affiliation:
USDA Agricultural Research Service, Southern Weed Science Research Unit, Stoneville, MS 38776
M. A. Matocha
Affiliation:
Department of Soil & Crop Sciences, Texas Agricultural Experiment Station, Texas A&M University, College Station, TX 77843-2474

Abstract

Although the effectiveness of vegetative filter strips (VFS) for reducing herbicide runoff is well documented, a comprehensive review of the literature does not exist. The objectives of this article are to denote the methods developed for evaluating herbicide retention in VFS; ascertain the efficacy of VFS regarding abating herbicide runoff; identify parameters that affect herbicide retention in VFS; review the environmental fate of herbicides retained by VFS; and identify future research needs. The retention of herbicide runoff by VFS has been evaluated in natural rainfall, simulated rainfall, and simulated run-on experiments. Parameters affecting herbicide retention in VFS include width of VFS, area ratio, species established in the VFS, time after establishment of the VFS, antecedent moisture content, nominal herbicide inflow concentration, and herbicide properties. Generally, subsequent transport of herbicides retained by VFS is reduced relative to adjacent cultivated soil because of enhanced sorption and degradation in the former.

Type
Soil, Air, and Water
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abu-Zreig, M. 2001. Factors affecting sediment trapping in vegetated filter strips: simulation study using VFSMOD. Hydrol. Process 15:14471488.Google Scholar
Anderson, T. A. and Coats, J. R. 1995. Screening rhizosphere soil samples for the ability to mineralize elevated concentrations of atrazine and metolachlor. J. Environ. Sci. Health B 30:473484.Google Scholar
Anderson, T. A., Kruger, E. L., and Coats, J. R. 1994a. Enhanced degradation of a mixture of three herbicides in the rhizosphere of a herbicide-tolerant plant. Chemosphere 28:12211557.CrossRefGoogle Scholar
Anderson, T. A., Kruger, E. L., and Coats, J. R. 1994b. Biological degradation of pesticide wastes in the root-zone of soils collected at an agrochemical dealership. Pages 199209 in Anderson, T. A. and Coats, J. R. eds. Bioremediation Through Rhizosphere Technology. ACS Symposium Series, Volume 563. Washington, DC: American Chemical Society.Google Scholar
Angers, D. A., Samson, N., and Legere, A. 1993. Early changes in water stable aggregation induced by rotation and tillage in a soil under barley production. Can. J. Soil Sci 73:5159.Google Scholar
Arora, K., Mickelson, S. K., and Baker, J. L. 2003. Effectiveness of vegetated buffer strips in reducing pesticide transport in simulated runoff. Trans. Am. Soc. Agric. Eng 46:635644.CrossRefGoogle Scholar
Arora, K., Mickelson, S. K., Baker, J. L., Tierney, D. P., and Peters, C. J. 1996. Herbicide retention by vegetative buffer strips from runoff under natural rainfall. Trans. Am. Soc. Agric. Eng 39:21552162.Google Scholar
Arthur, E. L., Perkovich, B. S., Anderson, T. A., and Coats, J. R. 2000. Degradation of an atrazine and metolachlor herbicide mixture in pesticide-contaminated soils from two agrochemical dealerships in Iowa. Water Air Soil Pollut 119:7590.Google Scholar
Asmussen, L. E., White, A. W. Jr., Hauser, E. W., and Sheridan, J. M. 1977. Reduction of 2,4-D load in surface runoff down a grassed waterway. J. Environ. Qual 6:159162.Google Scholar
Baker, J. L. and Laflen, J. M. 1979. Runoff losses of surface applied herbicides as affected by wheel tracks and incorporation. J. Environ. Qual 8:602607.Google Scholar
Barfield, B. J., Blevins, R. L., Fogle, A. W., Madison, C. E., Inamdar, S., Carey, D. I., and Evangelou, V. P. 1998. Water Quality impacts of natural filter strips in karst areas. Trans. Am. Soc. Agric. Eng 41:371381.Google Scholar
Beare, M. H., Hendrix, P. F., and Coleman, D. C. 1994. Water-stable aggregates and organic matter fractions in conventional and no-tillage soils. Soil Sci. Soc. Am. J 58:777786.Google Scholar
Benoit, P., Barriuso, E., Vidon, P., and Real, B. 1999. Isoproturon sorption and degradation in a soil from grassed buffer strip. J. Environ. Qual 28:121129.Google Scholar
Benoit, P., Barriuso, E., Vidon, P., and Real, B. 2000. Isoproturon movement and dissipation in undisturbed soil cores from a grassed buffer strip. Agronomie 20:297307.Google Scholar
Bharati, L., Lee, K. H., Isenhart, T. M., and Schultz, R. C. 2002. Soil-water infiltration under crops, pasture, and established riparian buffer in Midwestern USA. Agrofor. Syst 56:249257.Google Scholar
Blanche, S. B., Shaw, D. R., Massey, J. H., Boyette, M., and Smith, M. C. 2003. Fluometuron adsorption to vegetative filter strip components. Weed Sci 51:125129.Google Scholar
Bottomley, P. J., Sawyer, T. J., Boersma, L., Dick, R. P., and Hemphill, D. D. 1999. Winter cover crop enhances 2,4-D mineralization potential of surface and subsurface soil. Soil Biol. Biochem 31:849857.Google Scholar
Boyd, P. M., Baker, J. L., Mickelson, S. M., and Ahmed, S. I. 2003. Pesticide transport with surface runoff and subsurface drainage through a vegetative filter strip. Trans. Am. Soc. Agric. Eng 46:675684.Google Scholar
Burken, J. G. and Schnoor, J. L. 1996. Phytoremediation: plant uptake of atrazine and role of root exudates. J. Environ. Eng 122:958963.Google Scholar
Christensen, B. J., Montgomery, J. M., Fawcett, R. S., and Tierney, D. 1993. BMPs for Water Quality. West Lafayette, IN: Conservation Technological Information Center, p. 43.Google Scholar
Clark, G. M. and Goolsby, D. A. 2000. Occurrence and load of selected herbicides and metabolites in the lower Mississippi River. Sci. Total Environ 248:101113.Google Scholar
Costa, R. M., Camper, N. D., and Riley, M. B. 2000. Atrazine degradation in a containerized rhizosphere system. J. Environ. Sci. Health B 35:677687.Google Scholar
Dabney, S. M., Liu, Z., Lane, M., Douglas, J., Zhu, J., and Flanagan, D. C. 1999. Landscape benching from tillage erosion between grass hedges. Soil Tillage Res 51:219231.CrossRefGoogle Scholar
Dabney, S. M., Meyer, L. D., Harnon, M. C., Alonso, C. V., and Foster, G. R. 1995. Depositional patterns of sediment trapped by grass hedges. Trans. Am. Soc. Agric. Eng 38:17191729.Google Scholar
Daniels, R. B. and Gilliam, J. W. 1996. Sediment and chemical load reduction by grass and riparian filters. Soil Sci. Soc. Am. J 60:246251.Google Scholar
Delphin, J. E. and Chapot, J. Y. 2001. Leaching of atrazine and deethylatrazine under a vegetative filter strip. Agronomie 21:461470.Google Scholar
Dillaha, T. A., Reneau, R. B., Mostaghimi, S., and Lee, D. 1989. Vegetative filter strips for agricultural nonpoint source pollution control. Trans. Am. Soc. Agric. Eng 32:513519.Google Scholar
Dillaha, T. A., Sherrard, J. H., Lee, D., Mostaghimi, S., and Shanholtz, V. O. 1988. Evaluation of vegetative filter strips as a best management practice for feed lots. J. Water Pollut. Control Fed 60:12311238.Google Scholar
Dozier, M. C., Senseman, S. A., Hoffman, D. W., and Baumann, P. A. 2002. Comparisons of atrazine and metolachlor affinity for bermudagrass (Cynodon dactylon L.) and two soils. Arch. Environ. Contam. Toxicol 43:292295.CrossRefGoogle Scholar
Drees, L. R., Karathanasis, A. D., Wilding, L. P., and Blevins, R. L. 1994. Micromorphological characteristics of long-term no-till and conventionally tilled soils. Soil Sci. Soc. Am. J 58:508517.Google Scholar
Edwards, W. M., Norton, L. D., and Redomond, C. E. 1988. Characterizing macropores that affect infiltration into nontilled soil. Soil Sci. Soc. Am. J 52:483487.Google Scholar
Fiener, P. and Auerswald, K. 2003. Effectiveness of grassed waterways in reducing runoff and sediment delivery from agricultural watersheds. J. Environ. Qual 32:927936.Google Scholar
Gaynor, J. D. and Findlay, W. I. 1995. Soil and phosphorus loss from conservation and conventional tillage in corn production. J. Environ. Qual 24:734741.CrossRefGoogle Scholar
Ghani, A. and Wardle, D. A. 2001. Fate of 14C from glucose and the herbicide metsulfuron-methyl in a plant-soil microcosm system. Soil Biol. Biochem 33:777785.Google Scholar
Gianessi, L. P. and Marcelli, M. B. 2000. Pesticide use in U.S. Crop Production: National Summary Report. Washington, DC: National Center for Food and Agricultural Policy.Google Scholar
Gilley, J. E., Eghball, B., Kramer, L. A., and Moorman, T. B. 2000. Narrow grass hedge effects on runoff and soil loss. J. Soil Water Conserv 55:190196.Google Scholar
Haines, P. J. and Uren, N. C. 1990. Effects of conservation tillage farming on soil microbial biomass, organic matter and earthworm populations in Northeastern Victoria. Aust. J. Exp. Agric 30:365371.CrossRefGoogle Scholar
Hall, J. K., Hartwig, N. L., and Hoffman, L. D. 1983. Application mode and alternate cropping effects on atrazine losses from a hillside. J. Environ. Qual 12:336340.Google Scholar
Hayes, J. C., Barfield, B. J., and Barnhisel, R. I. 1984. Performance of grass filters under laboratory and field conditions. Trans. Am. Soc. Ag. Eng 27:13211331.Google Scholar
Hayes, J. C. and Dillaha, T. A. 1992. Vegetative Filter Strips: I. Site Suitability and Design. Paper 92-2102. St. Joseph, MI: American Society of Agricultural Engineers.Google Scholar
Hernandez, F., Hidalgo, C., Sancho, J. V., and Lopez, F. J. 1997. New method for the rapid determination of triazine herbicides and some of their main metabolites in water by using coupled-column liquid chromatography and large volume injection. J. Chromatogr. A 778:171181.Google Scholar
Hoagland, R. E., Zablotowicz, R. M., and Locke, M. A. 1997. An integrated system for the phytoremediation of chloroacetamide contaminated soils. Pages 92105 in Kruger, E. L., Anderson, T. A., and Coats, J. R. eds. Phytoremedation of Soil and Water Contaminants. ACS Symposium Series, Volume 664. Washington, DC: American Chemical Society.Google Scholar
Intarapapong, W., Hite, D., and Reinschmiedt, L. 2002. Water quality impacts of conservation agricultural practices in the Mississippi delta. J. Am. Water Resources Assoc 38:507515.CrossRefGoogle Scholar
Jin, C. X., Dabney, S. M., and Rens, M. J. M. 2002. Trapped mulch increases sediment removal by vegetative filter strips: a flume study. Trans. Am. Soc. Agric. Eng 45:929939.Google Scholar
Kloppel, H., Kordel, W., and Stein, B. 1997. Herbicide transport by surface runoff and herbicide retention in a filter strip—rainfall and runoff simulation studies. Chemosphere 35:129141.Google Scholar
Krutz, L. J., Senseman, S. A., Dozier, M. C., Hoffman, D. W., and Tierney, D. P. 2003a. Infiltration and adsorption of dissolved atrazine and atrazine metabolites in buffalograss filter strips. J. Environ. Qual 32:23192324.Google Scholar
Krutz, L. J., Senseman, S. A., Dozier, M. C., Hoffman, D. W., and Tierney, D. P. 2004a. Infiltration and adsorption of dissolved metolachlor, metolachlor oxanilic acid, and metolachlor ethanesulfonic acid by buffalograss (Buchloe dactyloides) filter strips. Weed Sci 52:166171.Google Scholar
Krutz, L. J., Senseman, S. A., McInnes, K. J., Hoffman, D. W., and Tierney, D. P. 2004b. Adsorption and desorption of metolachlor and metolachlor metabolites in vegetated filter strip and cultivated soil. J. Environ. Qual 33:939945.Google Scholar
Krutz, L. J., Senseman, S. A., McInnes, K. J., Zuberer, D. A., and Tierney, D. P. 2003b. Adsorption and desorption of atrazine, desethylatrazine, deisopropylatrazine, and hydroxyatrazine in vegetated filter strip and cultivated soil. J. Agric. Food Chem 51:73797384.CrossRefGoogle ScholarPubMed
Lee, K. H., Isenhar, T. M., Schultz, R. C., and Mickelson, S. K. 2000. Multispecies riparian buffers trap sediment and nutrients during rainfall simulations. J. Environ. Qual 29:12001205.Google Scholar
Leonard, R. A. 1990. Movement of pesticides into surface waters. Pages 303350 in Cheng, H. H. ed. Pesticides in the Soil Environment. Processes, Impacts, and Modeling, SSSA Book Series 2. Madison, WI: Soil Science Society of America.Google Scholar
Li, H., Sheng, G., Sheng, W., and Xu, O. 2002. Uptake of trifluralin and lindane from water by ryegrass. Chemosphere 48:335341.Google Scholar
Locke, M. A. and Bryson, C. T. 1997. Herbicide-soil interactions in reduced tillage and plant residue management systems. Weed Sci 45:307320.Google Scholar
Lowrance, R., Vellidis, G., Wauchope, R. D., Gay, P., and Bosch, D. D. 1997. Herbicide transport in a managed riparian forest buffer system. Trans. Am. Soc. Agric. Eng 40:10471057.Google Scholar
Magette, W. L., Brinsfield, R. B., Palmer, R. E., and Wood, J. D. 1989. Nutrient and sediment removal by vegetated filter strips. Trans. Am. Soc. Agric. Eng 32:663667.Google Scholar
Marchand, A., Piutti, S., Lagacherie, B., and Soulas, G. 2002. Atrazine mineralization in bulk soil and maize rhizosphere. Biol. Fertil. Soils 35:288292.Google Scholar
Mersie, W. and Seybold, C. 1997. Design, construction, and operation of tilted beds to simulate agricultural runoff in vegetative filter strips. Weed Technol 11:618622.Google Scholar
Mersie, W., Seybold, C., and Tsegaye, T. 1999a. Movement, adsorption, and mineralization of atrazine in two soils with and without switchgrass (Panicum virgatum) roots. Eur. J. Soil Sci 50:343349.Google Scholar
Mersie, W., Seybold, C. A., McNamee, C., and Huang, J. 1999b. Effectiveness of switchgrass filter strips in removing dissolved atrazine and metolachlor from runoff. J. Environ. Qual 28:816821.Google Scholar
Mersie, W., Seybold, C. A., McNamee, C., and Lawson, M. A. 2003. Abating endosulfan from runoff using vegetative filter strips: the importance of plant species and flow rate. Agric. Ecol. Environ 97:215223.Google Scholar
Meyer, L. D., Dabney, S. M., and Harmon, W. C. 1995. Sediment-trapping effectiveness of stiff-grass hedges. Trans. Am. Soc. Agric. Eng 35:809815.CrossRefGoogle Scholar
Mickelson, S. K., Baker, J. L., and Ahmed, S. I. 2003. Vegetative filter strips for reducing atrazine and sediment runoff transport. J. Soil Water Conserv 58:359367.Google Scholar
Misra, A. K., Baker, J. L., Mickelson, S. K., and Shang, H. 1996. Contributing area and concentration effects on herbicide removal by vegetative buffer strips. Trans. Am. Soc. Agric. Eng 39:21052111.CrossRefGoogle Scholar
Mukhtar, S., Baker, J. L., Horton, R., and Erbach, D. C. 1985. Soil water infiltration as affected by the use of the paraplow. Trans. Am. Soc. Agric. Eng 28:18111816.Google Scholar
Myers, J. L. and Wagger, M. G. 1996. Runoff and sediment loss from three tillage systems under simulated rainfall. Soil Tillage Res 39:115129.Google Scholar
Nowell, L. H. and Resek, E. A. 1994. National standard and guidelines for pesticides in water, sediment, and aquatic organisms: application to water-quality assessments. Rev. Environ. Contam. Toxicol 140:1164.Google Scholar
Paterson, K. G. and Schnoor, J. L. 1992. Fate of alachlor and atrazine in a riparian zone field site. Water Environ. Res 64:274283.Google Scholar
Patty, L., Real, B., and Gril, J. J. 1997. The use of grassed buffer strips to remove pesticides, nitrate and soluble phosphorus compounds from runoff water. Pestic. Sci 49:243251.Google Scholar
Perkovich, B. S., Anderson, T. A., Kruger, E. L., and Coats, J. R. 1996. Enhanced mineralization of [14C] Atrazine in Kochia scoparia rhizospheric soil from a pesticide-contaminated site. Pestic. Sci 46:391396.Google Scholar
Peterjohn, W. T. and Correll, D. L. 1984. Nutrient dynamics in an agricultural watershed: observations on the role of a riparian forest. Ecology 65:14661475.Google Scholar
Rankins, A. Jr., Shaw, D. R., and Boyette, M. 2001. Perennial grass filter strips for reducing herbicide losses in runoff. Weed Sci 49:647651.Google Scholar
Rankins, A. Jr., Shaw, D. R., and Kingery, W. L. 2002. Comparison of fluometuron sorption to soil from a filter strip and cropped field. Weed Sci 50:820823.CrossRefGoogle Scholar
Reddy, K. N., Locke, M. A., Wagner, S. C., Zablotowicz, R. M., Gaston, L. A., and Smeda, R. J. 1995. Chlorimuron ethyl sorption and desorption kinetics in soils and herbicide-desiccated cover crop residues. J. Agric. Food Chem 43:27522757.Google Scholar
Renard, K. G., Foster, G. R., Weesies, G. A., McCool, D. K., and Yoder, D. C. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RULSE). Agriculture Handbook 703. Washington, DC: U.S. Department of Agriculture, 23 p.Google Scholar
Reungsang, A., Moorman, T. B., and Kanwar, R. S. 2001. Transport and fate of atrazine in Midwestern riparian buffer strips. J. Am. Water Res. Assoc 37:16811692.Google Scholar
Rhode, W. A., Asmussen, L. E., Hauser, E. W., Wauchope, R. D., and Allison, H. D. 1980. Trifluralin movement in runoff from a small agricultural watershed. J. Environ. Qual 9:3742.Google Scholar
Schmitt, T. J., Dosskey, M. G., and Hoagland, K. D. 1999. Filter strip performance and processes for different vegetation, widths, and contaminants. J. Environ. Qual 28:14791489.CrossRefGoogle Scholar
Schnurer, J. and Roswall, T. 1982. Fluorescien diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol 43:12561261.CrossRefGoogle Scholar
Schultz, R. C., Colletti, J. P., Isenhar, T. M., Simpkins, W. W., Mize, C. W., and Thompson, M. L. 1995. Design and placement of multi-species riparian buffer strip system. Agrofor. Syst 29:201226.Google Scholar
Scribner, E. A., Battaglin, W. A., Goolsby, D. A., and Thurman, E. M. 2000. Changes in herbicide concentrations in midwestern streams in relation to changes in use, 1989–1998. Sci. Total Environ 248:255263.Google Scholar
Senseman, S. A., Lavy, T. L., and Daniel, T. C. 1997. Monitoring groundwater for pesticides at selected mixing/loading sites in Arkansas. Environ. Sci. Technol 31:283288.Google Scholar
Seta, A. K., Blevins, R. L., Frye, W. W., and Barfield, B. J. 1993. Reducing soil-erosion and agricultural chemical losses with conservation tillage. J. Environ. Qual 22:661665.CrossRefGoogle Scholar
Seybold, C., Mersie, W., and Delorem, D. 2001. Removal and degradation of atrazine and metolachlor by vegetative filter strips on clay loam soil. Commun. Soil Sci. Plant Anal 32:723737.Google Scholar
Seybold, C. A. and Mersie, W. 1996. Adsorption and desorption of atrazine, deethylatrazine, deisopropylatrazine, hydroxyatrazine, and metolachlor in two soils from Virginia. J. Environ. Qual 25:11791185.Google Scholar
Shankle, M. W., Shaw, D. R., and Boyette, M. 2001. Confirmation of an enzyme-linked immunosorbent assay to detect fluometuron in soil. Weed Technol 15:669675.Google Scholar
Shankle, M. W., Shaw, D. R., Kingry, W. L., and Locke, M. A. 2004. Pages 164178 in Nett, M. T., Locke, M. A., and Pennington, D. A. eds. Water Quality Assessments in the Mississippi Delta: Regional Solutions, National Scope. ACS Symposium Series, Volume 877. Washington, DC: American Chemical Society.Google Scholar
Smith, M. C., Shaw, D. R., Massey, J. H., Boyette, M., and Kingery, W. 2003. Using nonequilibrium thin-disc and batch equilibrium techniques to evaluate herbicide sorption. J. Environ. Qual 32:13931404.Google Scholar
Staddon, W. J., Locke, M. A., and Zablotowicz, R. M. 2001. Microbiological characteristics of a vegetative buffer strip soil and degradation and sorption of metolachlor. Soil Sci. Soc. Am. J 65:11361142.Google Scholar
Thurman, E. M., Bastian, K. C., and Mollhagen, T. 2000. Occurrence of cotton herbicides and insecticides in playa lakes of the high plains of West Texas. Sci. Total Environ 248:189200.Google Scholar
Thurman, E. M., Goolsby, D. A., Aga, D. S., Pomes, M. L., and Meyer, M. T. 1996. Occurrence of alachlor and its sulfonated metabolite in rivers and reservoirs of the Midwestern United States: the importance of sulfonation in the transport of chloroacetanilide herbicides. Environ. Sci. Technol 30:569574.Google Scholar
Tingle, C. H., Shaw, D. R., Boyette, M., and Murphey, G. P. 1998. Metolachlor and metribuzin losses in runoff as affected by width of vegetative filter strips. Weed Sci 46:475479.Google Scholar
Vellidis, G., Lowrance, R., Gay, P., and Wauchope, R. D. 2002. Herbicide transport in a restored riparian forest buffer system. Trans. Am. Soc. Agric. Eng 45:89–87.Google Scholar
Vencill, W. K. ed. 2002. Herbicide Handbook. 8th ed. Lawrence, KS: Weed Science Society of America. 493 p.Google Scholar
Wagner, S. C. and Zablotowicz, R. M. 1997a. Utilization of plant material for remediation of herbicide-contaminated soils. Pages 6576 in Kruger, E. L., Anderson, T. A., and Coats, J. R. eds. Phytoremediation of Soil and Water Contaminants. ACS Symposium Series, Volume 664. Washington, DC: American Chemical Society.Google Scholar
Wagner, S. C. and Zablotowicz, R. M. 1997b. Effect of organic amendments on the bioremediation of cyanazine and fluometuron in soil. J. Environ. Sci. Health B 32:3754.Google Scholar
Wauchope, R. D. 1978. The pesticide content of surface water draining from agricultural fields—a review. J. Environ. Qual 7:459472.CrossRefGoogle Scholar
Wauchope, R. D., Graney, R. L., Cryer, S. A., Eadsforth, C., Klein, A. W., and Racke, K. D. 1995. Pesticide runoff: methods and interpretation of field studies. Pure Appl. Chem 67:20892108.CrossRefGoogle Scholar
Webster, E. P. and Shaw, D. R. 1996. Impact of vegetative filter strips on herbicide loss in runoff from soybean (Glycine max). Weed Sci 44:662671.Google Scholar
Weill, A. N., de Kimpe, C. R., and McKyes, E. 1988. Effect of tillage reduction and fertilizer on soil macro- and microaggregation. Can. J. Soil Sci 68:489500.Google Scholar
Wilson, P. C., Whitwell, T., and Klaine, S. J. 2000. Phytotoxicity, uptake, and distribution of 14C-simazine in Acorus gramenius and Pontederia cordata . Weed Sci 48:701709.Google Scholar
Wolfe, J. E. III, Potter, K. N., and Hoffman, D. H. 2000. A device for simulating overland flow. J. Soil Water Conserv 55:102104.Google Scholar
Wu, J., Mersie, W., Atalay, A., and Seybold, C. A. 2003. Copper retention from runoff by switchgrass and tall fescue filter strips. (Research). J. Soil Water Conserv 58:6774.Google Scholar
Zablotowicz, R. M. and Hoagland, R. E. 1999. Microbiological considerations in phytoremedation strategies for pesticide-contaminated soils and waters. Pages 343360 in Rajak, R. C. ed. Microbial Biotechnology for Sustainable Agriculture. Jodhpur, India: Scientific.Google Scholar
Zablotowicz, R. M., Hoagland, R. E., Staddon, W. J., and Locke, M. A. 2000. Effects of pH on chemical stability and de-esterification of fenoxaprop-ethyl by purified enzymes, bacterial extracts, and soils. J. Agric. Food Chem 48:47114716.Google Scholar
Zablotowicz, R. M., Hoagland, R. E., and Wagner, S. C. 1998. 2-nitro-acetanilide as substrate for determination of aryl acylamidase activity in soils. Soil Biol. Biochem 30:679686.Google Scholar
Zablotowicz, R. M., Locke, M. A., and Smeda, R. J. 1988. Degradation of 2,4-D and fluometuron in cover crop residues. Chemosphere 37:87101.Google Scholar