Skip to main content Accessibility help
×
Home

Phosphorus absorption in lettuce, smooth pigweed (Amaranthus hybridus), and common purslane (Portulaca oleracea) mixtures

  • Bielinski M. Santos, Joan A. Dusky (a1), William M. Stall (a1), Thomas A. Bewick (a2), Donn G. Shilling (a3) and James P. Gilreath (a4)...

Abstract

Greenhouse studies were conducted to determine the influence of phosphorus (P) concentrations on the growth of lettuce, smooth pigweed, and common purslane in monocultures and in mixtures and to determine the P-absorption rate of each species over time. For the P-competition studies, lettuce–smooth pigweed and lettuce–common purslane mixtures were established in P-less hydroponic solutions. Each lettuce–weed mixture was established separately. Concentrations of P were 10, 20, 40, 80, and 160 mg L−1. Lettuce to weed planting proportions were 2:0, 0:2, and 1:1. In the mixtures, biomass of common purslane increased sharply between 10 and 20 mg P L−1, depressing lettuce growth. No biomass changes were observed in smooth pigweed as P concentration increased. However, both weeds increased their P content within this range, depriving lettuce of this nutrient. Common purslane competed for P for its own growth, whereas smooth pigweed absorbed P luxuriously. For the P-absorption studies, roots of lettuce, smooth pigweed, and common purslane plants were submersed in a 20 mg P L−1 solution for 1, 2.5, 5, 10, 20, 40, 60, 90, 180, 360, 720, and 1,440 min. Common purslane was shown to be the most aggressive species for the nutrient, absorbing 50% of the content in 295 min, whereas lettuce and smooth pigweed needed 766 and 825 min to absorb 10 mg P L−1.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Phosphorus absorption in lettuce, smooth pigweed (Amaranthus hybridus), and common purslane (Portulaca oleracea) mixtures
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Phosphorus absorption in lettuce, smooth pigweed (Amaranthus hybridus), and common purslane (Portulaca oleracea) mixtures
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Phosphorus absorption in lettuce, smooth pigweed (Amaranthus hybridus), and common purslane (Portulaca oleracea) mixtures
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. Gulf Coast Research and Education Center, University of Florida, 5007 60th Street East, Bradenton, FL 34203; bmsantos@yahoo.com

References

Hide All
Carlson, H. L. and Hill, J. E. 1986. Wild oat (Avena fatua) competition with spring wheat: effects of nitrogen fertilization. Weed Sci 34:2933.
DiTomaso, J. M. 1995. Approaches for improving crop competitiveness through the manipulation of fertilization strategies. Weed Sci 43:491497.
Godbold, D. L. and Sharrock, R. 2003. Mycorrhizas. Pages 271287 in Schroth, G. and Sinclair, F. L. eds. Trees, Crops and Soil Fertility: Concepts and Research Methods. Wallingford, U.K.: CABI.
Gonzalez Ponce, R., Zancada, C., Verdugo, M., and Salas, L. 1996. Plant height as a factor in competition between black nightshade and two horticultural crops (tomato and pepper). J. Am. Soc. Hort. Sci 71:453460.
Iqbal, J. and Wright, D. 1997. Effects of nitrogen supply on competition between wheat and three annual weed species. Weed Res 37:391400.
Miller, J. C., Rajapakse, S., and Garber, R. K. 1986. Vesicular-arbuscular mycorrhizae in vegetable crops. HortScience 21:974984.
Morales Payan, J. P., Santos, B. M., Stall, W. M., and Bewick, T. A. 1998. Influence of purple nutsedge (Cyperus rotundus) population densities on bell pepper (Capsicum annuum) yield as affected by nitrogen rates. Weed Technol 12:230234.
Morales Payan, J. P., Santos, B. M., Stall, W. M., and Bewick, T. A. 1999. Nitrogen effects on the competitive interactions of purple nutsedge (Cyperus rotundus) and cilantro (Coriandrum sativum). J. Herbs, Spices and Med. Plants 6:5966.
Murphy, J. and Riley, J. P. 1962. A modified single solution method for the determination of phosphate in natural waters. Anal. Chem. Acta 27:3136.
Owusu-Bennoah, E. and Wild, A. 1980. Effects of vesicular-arbuscular mycorrhiza on the size of the labile pool of soil phosphate. Plant Soil 54:233242.
Plenchette, C., Furlan, V., and Fortin, J. A. 1982. Effects of different endomycorrhizal fungi on five host plants grown on calcined montmorillonite clay. J. Am. Soc. Hort. Sci 107:535538.
Qasem, J. R. 1993. Root growth, development, and nutrient uptake of tomato (Lycopersicon esculentum) and Chenopodium album . Weed Res 33:3542.
Sample, E. C., Soper, R. J., and Racz, G. J. 1980. Reactions of phosphate fertilizers in soils. Pages 263304 in Khasawneh, F. E. ed. The Role of Phosphorus in Agriculture. Madison, WI: ASA, CSSA, SSSA Press.
Sanchez, C. A. 1991. Soil Testing and Fertilization Recommendations for Crop Production on Organic Soils in Florida. Florida Cooperative Extension Service Bull. 876.
Sanchez, C. A. and Porter, P. S. 1994. Phosphorus in the organic soils of the EAA. Pages 6284 in Bottcher, A. B. and Izuno, F. T. eds. Everglades Agricultural Area: Water, Soil, Crop and Environmental Management. Gainesville, FL: University of Florida Press.
Santos, B. M., Dusky, J. A., Stall, W. M., Bewick, T. A., and Shilling, D. G. 2003a. Influencia de la fertilización fosforada sobre la interferencia del bledo (Amaranthus hybridus) y la verdolaga (Portulaca oleracea) en lechuga producida en suelos orgánicos. Manejo Integrado de Plagas 67:1216.
Santos, B. M., Dusky, J. A., Stall, W. M., and Gilreath, J. P. 2003b. Influence of common lambsquarters (Chenopodium album) densities and phosphorus fertilization on lettuce. Crop Prot 23:173176.
Santos, B. M., Dusky, J. A., Stall, W. M., Bewick, T. A., and Shilling, D. G. 2004. Mechanisms of interference of smooth pigweed and common purslane on lettuce as influenced by phosphorus fertility. Weed Sci 52:6367.
Santos, B. M., Dusky, J. A., Stall, W. M., Shilling, D. G., and Bewick, T. A. 1998a. Phosphorus effects on competitive interactions of smooth pigweed (Amaranthus hybridus) and common purslane (Portulaca oleracea) with lettuce (Lactuca sativa). Weed Sci 46:307312.
Santos, B. M., Morales Payan, J. P., Stall, W. M., and Bewick, T. A. 1998b. Influence of purple nutsedge (Cyperus rotundus) density and nitrogen rate on radish (Raphanus sativus) yield. Weed Sci 46:661664.
[SAS] Statistical Analysis System. 1999. SAS/STAT User's Guide. Version 8. Statistical Analysis System Institute. 1243 pp.
Schuybert, A. and Hayman, D. S. 1978. Plant growth responses to vesicular-arbuscular mycorrhizae. XVI. Effectiveness of different endotypes at different levels of soil phosphate. New Phytologist 103:7980.
Shrefler, J. W., Dusky, J. A., Shilling, D. G., Brecke, B. J., and Sanchez, C. A. 1994a. Effects of phosphorus fertility on competition between lettuce (Lactuca sativa) and spiny amaranth (Amaranthus spinosus). Weed Sci 42:556560.
Shrefler, J. W., Shilling, D. G., Dusky, J. A., and Brecke, B. J. 1994b. Influence of phosphorus fertility on intra- and interspecific interference between lettuce (Lactuca sativa) and spiny amaranth (Amaranthus spinosus). Weed Sci 42:574578.
Stall, W. M. 2002. Weed control in leafy vegetables (lettuce, endive, escarole and spinach). Pages 3336 in Stall, W. M. ed. Weed Management in Florida Fruits and Vegetables, 2002–2003. Gainesville, FL: IFAS-University of Florida.
[USDA] U.S. Department of Agriculture, National Agricultural Statistics Service. 2002. Crop Production—Annual Summary: 2002 Vegetable Crops Summary. www.usda.mannlib.cornell.edu.

Keywords

Phosphorus absorption in lettuce, smooth pigweed (Amaranthus hybridus), and common purslane (Portulaca oleracea) mixtures

  • Bielinski M. Santos, Joan A. Dusky (a1), William M. Stall (a1), Thomas A. Bewick (a2), Donn G. Shilling (a3) and James P. Gilreath (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed