Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-23T07:01:19.370Z Has data issue: false hasContentIssue false

A new race of sunflower broomrape (Orobanche cumana) with a wider host range due to changes in seed response to strigolactones

Published online by Cambridge University Press:  27 December 2019

Evgenia Dor*
Affiliation:
Research Scientist, Department of Weed Research, Agricultural Research Organization (ARO), Newe Ya’ar Research Center, Ramat Yishay, Israel
Dina Plakhine
Affiliation:
Research Associate, Department of Weed Research, ARO, Newe Ya’ar Research Center, Ramat Yishay, Israel
Daniel M. Joel
Affiliation:
Research Scientist, Department of Weed Research, Agricultural Research Organization (ARO), Newe Ya’ar Research Center, Ramat Yishay, Israel
Hailey Larose
Affiliation:
PhD Student, Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
James H. Westwood
Affiliation:
Professor, Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
Evgeny Smirnov
Affiliation:
Research Associate, Department of Weed Research, ARO, Newe Ya’ar Research Center, Ramat Yishay, Israel
Hammam Ziadna
Affiliation:
Research Associate, Department of Weed Research, ARO, Newe Ya’ar Research Center, Ramat Yishay, Israel
Joseph Hershenhorn
Affiliation:
Research Scientist, Department of Weed Research, Agricultural Research Organization (ARO), Newe Ya’ar Research Center, Ramat Yishay, Israel
*
Author for correspondence: Evgenia Dor, Department of Weed Research, Agricultural Research Organization (ARO), Newe Ya’ar Research Center, P.O. Box 1021, Ramat Yishay30095, Israel. (Email: evgeniad@volcani.agri.gov.il)

Abstract

Broomrapes (Orobanche and Phelipanche species, Orobanchaceae) are obligate root parasites of dicotyledonous plants. This taxonomic group includes seven weedy parasites of agricultural crops that damage vegetables, sunflower (Helianthus annuus L.), and legumes. Processing-tomato (Solanum lycopersicum L.) fields in Israel have been recently found infested with a new broomrape, first identified as nodding broomrape (Orobanche cernua Loefl.) based on its host. However, its morphology resembled the closely related sunflower broomrape (Orobanche cumana Wallr.), an obligate parasite of sunflower. The new race (CUCE) parasitized sunflower, tomato, and tobacco (Nicotiana tabacum L.) in vitro, in a polyethylene bag system and in pots. Its seeds germinated in response to strigolactones (orobanchol, 5-deoxystrigol, 2′-epiorobanchol, and GR24) and dehydrocostus lactone (DCL), whereas O. cumana seeds responded only to DCL and GR24, and O. cernua only to strigolactones. Based on morphological similarities with O. cumana, shared molecular markers with O. cumana, ability to parasitize sunflower and respond to sunflower-germination stimulants, it was concluded that CUCE is a new race of O. cumana, with a host range expanding to Solanaceae crops. While being an important noxious weed of sunflower, this new O. cumana race is currently spreading and posing a threat to processing tomato in Israel. This finding is an alarming indication that broomrapes can shift host range and that similar new races of O. cumana could potentially appear in other countries.

Type
Research Article
Copyright
© Weed Science Society of America, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Associate Editor Name & Institution: Bhagirath Chauhan, The University of Queensland

References

Awad, AA, Sato, D, Kusumoto, D, Kamioka, H, Takeuchi, Y, Yoneyama, K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul 48:221227Google Scholar
Bouwmeester, HJ, Roux, C, Lopez-Raez, JA, Bécard, G (2007) Rhizosphere communication of plants, parasitic plants and AM fungi. Trends Plant Sci 12:224230CrossRefGoogle ScholarPubMed
Bruce, JA, Gressel, J (2013) Changing host specificities: by mutational changes or epigenetic reprogramming? Pages 231241in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae. Parasitic Mechanisms and Control Strategies. Berlin: Springer VerlagCrossRefGoogle Scholar
Calderón-González, A, Pouilly, N, Muños, S, Grand, X, Coque, M, Velasco, L, Pérez-Vich, B (2019) An SSR-SNP linkage map of the parasitic weed Orobanche cumana Wallr. Including a gene for plant pigmentation. Front Plant Sci, 10.3389/fpls.2019.00797CrossRefGoogle ScholarPubMed
Conn, CE, Neumann, RB-D, Yoshida, S, Whittington, B, Westwood, JH, Shirasu, K, Bond, CS, Dyer, KA, Nelson, DC (2015) Convergent evolution of strigolactone perception enabled host detection in parasitic plants. Science 349:540543CrossRefGoogle ScholarPubMed
Dor, E, Eizenberg, H, Joel, DM, Smirnov, E, Achdari, G, Hershenhorn, J (2014) Orobanche palaestina: a potential threat to agricultural crops in Israel. Phytoparasitica 42:285291CrossRefGoogle Scholar
Dor, E, Evidente, A, Amalfitano, C, Agrelli, D, Hershenhorn, J (2007) The influence of growth conditions on biomass, toxins and pathogenicity of Fusarium oxysporum f. sp. orthoceras, a potential agent for broomrape biocontrol. Weed Res 47:345352CrossRefGoogle Scholar
Dor, E, Yoneyama, K, Wininger, S, Kapulnik, Y, Yoneyama, K, Koltai, H, Xie, X, Hershenhorn, J (2011) Strigolactone deficiency confers resistance in tomato line SL-ORT1 to the parasitic weeds Phelipanche and Orobanche spp. Phytopathology 101:213222CrossRefGoogle ScholarPubMed
Eizenberg, H, Plakhine, D, Landa, T, Joel, DM, Hershenhorn, J (2004) First report of a new race of sunflower broomrape (Orobanche cumana) in Israel. Plant Dis 88:1284CrossRefGoogle Scholar
Ejeta, G (2007) Breeding for Striga resistance in sorghum: exploitation of an intricate host–parasite biology. Crop Sci 47:216227CrossRefGoogle Scholar
Fernández-Aparicio, M, Flores, F, Rubiales, D (2009) Recognition of root exudates by seeds of broomrape (Orobanche and Phelipanche) species. Ann Bot 103:423431CrossRefGoogle ScholarPubMed
Fernández-Aparicio, M, Pérez-de-Luque, A, Prats, E, Rubiales, D (2008) Variability of interactions between barrel medic (Medicago truncatula) genotypes and Orobanche species. Ann Appl Biol 153:117126CrossRefGoogle Scholar
Fernández-Aparicio, M, Yoneyama, K, Rubiales, D (2011) The role of strigolactones in host specificity of Orobanche and Phelipanche seed germination. Seed Sci Res 21:5561CrossRefGoogle Scholar
Fernández-Martínes, JM, Domíngues, J, Péres-Vich, B, Velasco, L (2008) Update on breeding for resistance to sunflower broomrape. Helia 31:7184Google Scholar
Gagne, G, Roeckel-Drevet, P, Grezes-Besset, B, Shindrova, P, Ivanov, P, Grand-Ravel, C, Vear, F, Tourvieille de Labrouhe, , D, Charmet, G, Nicolas, P (1998) Study of the variability and evolution of Orobanche cumana populations infesting sunflower in different European countries. Theor Appl Genet 96:12161222CrossRefGoogle Scholar
Hoagland, DR, Arnon, DI (1950) The Water-Culture Method for Growing Plants without Soil. Berkeley, CA: University of California Agricultural Experimental Station Circular 347. P 32Google Scholar
Joel, DM (1987) Detection and identification of Orobanche seeds using fluorescence microscopy. Seed Sci Technol 15:119124Google Scholar
Joel, DM (1988) The role of plants in preconditioning of Orobanche seeds. Phytoparasitica 16:374Google Scholar
Joel, DM (2000) The long-term approach to parasitic weeds control: manipulation of specific developmental mechanisms of the parasite. Crop Prot 19:753758CrossRefGoogle Scholar
Joel, DM (2015) Factors affecting host range of weedy Orobanchaceae: the Orobanche cumana case. Page 20in Proceedings of the 13th World Congress on Parasitic Plants. Kunming, China, July 5–10, 2015Google Scholar
Joel, DMChaudhuri, SK, Plakhine, D, Ziadna, H, Steffens, JS (2011) Dehydrocostus lactone is exuded from sunflower roots and stimulates germination of the root parasite Orobanche Cumana. Phytochemistry 72:624634CrossRefGoogle ScholarPubMed
Joel, DM, Hershenhorn, J, Eizenberg, H, Aly, R, Ejeta, G, Rich, JP, Ransom, J, Sauerborn, J, Rubiales, D (2007) Biology and management of weedy root parasites. Hortic Rev 33:267350Google Scholar
Linke, K-H, Joel, DM, Kroschel, J (2001) Observation of the underground development. Pages 5359in Kroschel, J, ed. A Technical Manual for Parasitic Weed Research and Extension. Dordrecht, Netherlands: Kluwer AcademicCrossRefGoogle Scholar
Manen, J-F, Habashi, C, Habashi, DJ, Park, J-M, Schneeweiss, G (2004) Phylogeny and intraspecific variability of holoparasitic Orobanche (Orobanchaceae) inferred from plastid rbcL sequences. Mol Phylogenet Evol 33:482500CrossRefGoogle ScholarPubMed
Martín-Sanz, A, Malek, J, Fernández-Martínez, JM, Pérez-Vich, B, Velasco, L (2016) Increased virulence in sunflower broomrape (Orobanche cumana Wallr.) populations from southern Spain is associated with greater genetic diversity. Front Plant Sci 7, 10.3389/fpls.2016.00589CrossRefGoogle Scholar
Molinero-Ruiz, L, García-Carneros, AB, Collado-Romero, M, Raranciuc, S, Domínguez, J, Melero-Vara, JM (2014) Pathogenic and molecular diversity in highly virulent populations of the parasitic weed Orobanche cumana (sunflower broomrape) from Europe. Weed Res 54:8796CrossRefGoogle Scholar
Murdoch, AJ, Kebreab, E (2013) Germination ecophysiology. Pages 195219in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae. Parasitic Mechanisms and Control Strategies. Berlin: Springer VerlagCrossRefGoogle Scholar
Murray, MG, Thompson, WF (1980) Rapid isolation of high-molecular-weight plant DNA. Nucl Acid Res 8:43214325Google Scholar
Parker, C 2013 The parasitic weeds of the Orobanchaceae. Pages 303329in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae. Parasitic Mechanisms and Control Strategies. Berlin: Springer VerlagGoogle Scholar
Parker, C, Riches, CR (1993) Parasitic Weeds of the World: Biology and Control. Wallingford, UK: CAB International. 332 pGoogle Scholar
Péres-Vich, B, Velasco, L, Rich, PJ, Ejeta, G (2013) Marker-assisted and physiology-based breeding for resistance to root parasitic Orobanchaceae. Pages 369391in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae. Parasitic Mechanisms and Control Strategies. Berlin: Springer VerlagCrossRefGoogle Scholar
Pineda-Martos, R, Velasco, L, Fernández-Escobar, J, Fernández-Martínez, JM, Pérez-Vich, B (2013) Genetic diversity of Orobanche cumana populations from Spain assessed using SSR markers. Weed Res 53:279289CrossRefGoogle Scholar
Plakhine, D, Tadmor, Y, Ziadne, H, Joel, DM (2012) Maternal tissue is involved in stimulant reception by seeds of the parasitic plant Orobanche. Ann Bot 109:979986CrossRefGoogle ScholarPubMed
Pujadas, AJ, Velasco, L (2000) Comparative studies on Orobanche cernua L. and O. cumana Wallr. (Orobanchaceae) in the Iberian Peninsula. Bot J Linn Soc 134:513527CrossRefGoogle Scholar
Raup, FM, Spring, O (2013) New sesquiterpene lactones from sunflower root exudate as germination stimulants for Orobanche cumana. J Agric Food Chem 61:1048110487CrossRefGoogle Scholar
Rodríguez-Ojeda, MI, Fernández-Martínez, JM, Velasco, L, Pérez-Vich, B (2013) Extent of cross-fertilization in Orobanche cumana Wallr. Biol Plant 57:559562Google Scholar
Román, B (2013) Population diversity and dynamics of parasitic weeds. Pages 345356in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae. Parasitic Mechanisms and Control Strategies. Berlin: Springer VerlagCrossRefGoogle Scholar
Román, B, Satovic, Z, Alfaro, C, Moreno, MT, Kharrat, A, Pérez-de-Luque, A, Rubiales, D (2007) Host differentiation in Orobanche foetida Poirl. Flora 202:201208CrossRefGoogle Scholar
Rubiales, D, Fernández-Aparicio, M, Pérez-de-Luque, A, Castillejo, MA, Prats, E, Sillero, JC, Rispaila, N, Fondevillac, S (2009) Breeding approaches for crenate broomrape (Orobanche crenata Forsk.) management in pea (Pisum sativum L.). Pest Manag Sci 65:553559CrossRefGoogle Scholar
Ruyter-Spira, C, Al-Babili, S, Van der Krol, S, Bouwmeester, H (2013) The biology of strigolactones. Trends Plant Sci 18:7283CrossRefGoogle ScholarPubMed
Schneeweiss, GM (2013) Genomic evolution in Orobanchaceae. Pages 267286in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae. Parasitic Mechanisms and Control Strategies. Berlin: Springer VerlagGoogle Scholar
Schneeweiss, GM, Colwell, AE, Park, JM, Jang, CG, Stuessy, TF (2004) Phylogeny of holoparasitic Orobanche (Orobanchaceae) inferred from nuclear ITS sequences. Mol Phylogenet Evol 30:465478CrossRefGoogle ScholarPubMed
Thorogood, C, Hiscock, S (2010a) Compatibility interactions at the cellular level provide the basis for host specificity in the parasitic plant Orobanche. New Phytol 186:571575CrossRefGoogle ScholarPubMed
Thorogood, C, Hiscock, S (2010b) Specific developmental pathways underlie host specificity in the parasitic plant Orobanche. Plant Signal Behav 5:275277CrossRefGoogle ScholarPubMed
Thorogood, C, Rumsey, FJ, Harris, SA, Hiscock, S (2009a) Gene flow between alien and native races of the holoparasitic angiosperm Orobanche minor (Orobanchaceae). Plant Syst Evol 282:3142CrossRefGoogle Scholar
Thorogood, C, Rumsey, FJ, Harris, SA, Hiscock, S (2009b) Host-driven divergence in the parasitic plant Orobanche minor Sm. (Orobanchaceae). Mol Ecol 1717:42894303Google Scholar
Xie, X, Yoneyama, K, Yoneyama, K (2010) The strigolactone story. Annu Rev Phytopathol 48:93117CrossRefGoogle ScholarPubMed
Ye, X, Chen, J, McErlean, CS, Zhang, M, Yu, R, Ma, Y (2017) The potential of foxtail millet as a trap crop for sunflower broomrape. Acta Physiol Plant 39, 10.1007/s11738-016-2300-xCrossRefGoogle Scholar
Yoneyama, K, Ruyter-Spira, C, Bouwmeester, H (2013) Induction of germination. Pages 167190in Joel, DM, Gressel, J, Musselman, LJ, eds. Parasitic Orobanchaceae. Parasitic Mechanisms and Control Strategies. Berlin: Springer VerlagCrossRefGoogle Scholar
Zhang, W, Ma, Y, Wang, Z, Ye, X, Shui, J (2013) Some soybean cultivars have ability to induce germination of sunflower broomrape. PLoS ONE 8:e59715CrossRefGoogle ScholarPubMed