Skip to main content Accessibility help
×
Home

Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii)

  • Kristen E. McNaughton (a1), Jocelyne Letarte (a1), Elizabeth A. Lee (a1) and François J. Tardif

Abstract

A number of redroot pigweed and Powell amaranth populations from various locations in Ontario, Canada, have distinct patterns of resistance to the acetolactate synthase–inhibiting herbicides imazethapyr and thifensulfuron. This suggested the presence of diverse ALS gene mutations among these populations. Seven polymerase chain reaction primer pairs were used to amplify the gene to obtain full sequence information and to determine the identity of resistance-conferring mutations. There was a high degree of similarity in the ALS gene of the two species with only five nucleotides and one amino acid differing. A total of four herbicide resistance-conferring mutations were identified in the two species. The Ala122Thr, Ala205Val, and Trp574Leu amino acid substitutions were found in redroot pigweed whereas Ala122Thr, Trp574Leu, and Ser653Thr were detected in Powell amaranth. The pattern of resistance known to be conferred by the mutations concurred with the resistance level observed at the whole plant level. Distinct mutations being found in geographically separated populations suggest that selection for resistance occurred simultaneously in different locations. It reinforces the fact that resistance to ALS inhibitors is easily selected and that growers need to take this into account when formulating weed management strategies.

Copyright

Corresponding author

Corresponding author. Department of Plant Agriculture, University of Guelph, 5 Stone Road East, Guelph, Ontario N1G 2W1, Canada; ftardif@uoguelph.ca

References

Hide All
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem 270:1738117385.
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1996. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem 271:13925.
Boutsalis, P., Karotam, J., and Powles, S. B. 1999. Molecular basis of resistance to acetolactate synthase-inhibiting herbicides in Sisymbrium orientale and Brassica tournefortii . Pest. Sci 55:507516.
Chong, C. K. and Choi, J. D. 2000. Amino acid residues conferring herbicide tolerance in tobacco acetolactate synthase. Biochem. Biophys. Res. Commun 279:462467.
Costea, M., Weaver, S. E., and Tardif, F. J. 2004. The biology of Canadian weeds. 130. Amaranthus retroflexus L., A. powellii S. Watson and A. hybridus L. Can. J. Plant Sci 84:631668.
Diebold, R. S., McNaughton, K. E., Lee, E. A., and Tardif, F. J. 2003. Multiple resistance to imazethapyr and atrazine in Powell amaranth (Amaranthus powellii). Weed Sci 51:312318.
Fang, L. Y., Gross, P. R., Chen, C. H., and Lillis, M. 1992. Sequence of two acetohydroxyacid synthase genes from Zea mays . Plant Mol. Biol 18:11851187.
Ferguson, G. M., Hamill, A. S., and Tardif, F. J. 2001. ALS-inhibitor resistance in populations of Amaranthus powellii and Amaranthus retroflexus . Weed Sci 49:448453.
Foes, M. J., Liu, L., Vigue, G., Stoller, E. W., Wax, L. M., and Tranel, P. J. 1999. A kochia (Kochia scoparia) biotype resistant to triazine and ALS-inhibiting herbicides. Weed Sci 47:2027.
Guttieri, M. J., Eberlein, C. V., and Thill, D. C. 1995. Diverse mutations in the acetolactate synthase gene confer chlorsulfuron resistance in kochia (Kochia scoparia) biotypes. Weed Sci 43:175178.
Heap, I. 2004. The International Survey of Herbicide Resistant Weeds. www.weedscience.com.
Lee, Y., Chang, A. K., and Duggleby, R. G. 1999. Effect of mutagenesis at serine 653 of Arabidopsis thaliana acetohydroxyacid synthase on the sensitivity to imidazolinone and sulfonylurea herbicides. FEBS Lett 452:341345.
Mallory-Smith, C. A., Thill, D. C., and Dial, M. J. 1990. Identification of sulfonylurea herbicide-resistant prickly lettuce (Lactuca serriola). Weed Technol 4:163168.
Milliman, L. D., Riechers, D. E., Wax, L. M., and Simmons, F. W. 2003. Characterization of two biotypes of imidazolinone-resistant eastern black nightshade (Solanum ptycanthum). Weed Sci 51:139144.
Mosyakin, S. L. and Robertson, K. R. 1996. New infrageneric taxa and combinations in Amaranthus (Amaranthaceae). Ann. Bot. Fenn 33:275281.
Patzoldt, W. L. and Tranel, P. J. 2001. ALS mutations conferring herbicide resistance in waterhemp. Proc. N. Cent. Weed Sci. Soc 56:67.
Preston, C. and Mallory Smith, C. A. 2001. Biochemical mechanisms, inheritance and molecular genetics of herbicide resistance in weeds. Pages 2360 in Powles, S. B. and Shaner, D. L. eds. Herbicide Resistance in World Grains. Boca Raton, FL: CRC.
Rutledge, R. G., Quellet, T., Hattori, J., and Miki, B. L. 1991. Molecular characterization and genetic origin of the Brassica napus acetohydroxyacid synthase multigene family. Mol. Gen. Genet 229:3140.
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicides. Pages 141170 in Powles, S. B. and Holtum, J.A.M. eds. Herbicide Resistant Plants: Biology and Biochemistry. Boca Raton, FL: CRC.
Santel, H. J., Bowden, B. A., Sorensen, V. M., and Mueller, K. H. 1999. Flucarbazone-sodium—a new herbicide for the selective control of wild oat and green foxtail in wheat. Pages 2328 in Proceedings 1999 Brighton Conference—Weeds, Volume 1. Farnham, U.K.: British Crop Protection Council.
Sauer, J. D. 1955. Revision of the dioecious amaranths. Madroño 13:546.
Siehl, D. L., Bengston, A. S., Brockman, J. P., Butler, J. H., Kraatz, G. W., Lamoreaux, R. J., and Subramanian, M. V. 1996. Patterns of cross-tolerance to herbicides inhibiting acetohydroxyacid synthase in commercial corn varieties designed for tolerance to imidazolinones. Crop Sci 36:274278.
Tan, M. K. and Medd, R. W. 2002. Characterisation of the acetolactate synthase (ALS) gene of Raphanus raphanistrum L. and the molecular assay of mutations associated with herbicide resistance. Plant Sci 163:195205.
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci 50:700712.
Uchino, A. and Watanabe, H. 2002. Mutations in the acetolactate synthase genes of sulfonylurea-resistant biotype of Lindernia spp. Weed Biol. Manag 2:104109.
White, A. D., Graham, M. A., and Owen, M. D. K. 2003. Isolation of acetolactate synthase homologs in common sunflower. Weed Sci 51:845853.
Woodworth, A. R., Bernasconi, P., Subramanian, M. V., and Rosen, B. A. 1996a. A second naturally occurring point mutation confers broad based tolerance to acetolactate synthase inhibitors. Plant Physiol 111:S105.
Woodworth, A. R., Rosen, B. A., and Bernasconi, P. 1996b. Broad range resistance to herbicides targeting acetolactate synthase (ALS) in a field isolate of Amaranthus sp. is conferred by a Trp to Leu in the ALS Gene. Plant Physiol 111:1353.
Wright, T. R., Bascomb, N. F., Sturner, S. F., and Penner, D. 1998. Biochemical mechanism and molecular basis for ALS-inhibiting herbicide resistance in sugarbeet (Beta vulgaris) somatic cell selections. Weed Sci 46:1323.
Yu, Q., Zhang, X. Q., Hashem, A., Walsh, M. J., and Powles, S. B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight geographically separated Raphanus raphanistrum populations. Weed Sci 51:831838.

Keywords

Related content

Powered by UNSILO

Mutations in ALS confer herbicide resistance in redroot pigweed (Amaranthus retroflexus) and Powell amaranth (Amaranthus powellii)

  • Kristen E. McNaughton (a1), Jocelyne Letarte (a1), Elizabeth A. Lee (a1) and François J. Tardif

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.