Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T13:44:41.718Z Has data issue: false hasContentIssue false

Jointed Goatgrass (Aegilops cylindrica) by Imidazolinone-Resistant Wheat Hybridization under Field Conditions

Published online by Cambridge University Press:  20 January 2017

Todd A. Gaines*
Affiliation:
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
W. Brien Henry
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Central Great Plains Research Station, Akron, CO 80720
Patrick F. Byrne
Affiliation:
Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO 80523
Philip Westra
Affiliation:
Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523
Scott J. Nissen
Affiliation:
Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523
Dale L. Shaner
Affiliation:
U.S. Department of Agriculture–Agricultural Research Service, Water Management Research Unit, Fort Collins, CO 80526
*
Corresponding author's E-mail: todd.gaines@colostate.edu

Abstract

Gene flow between jointed goatgrass and winter wheat is a concern because transfer of herbicide-resistance genes from imidazolinone-resistant (IR) winter wheat cultivars to jointed goatgrass could restrict weed-management options for this serious weed of winter wheat cropping systems. The objectives of this study were (1) to investigate the frequency of interspecific hybridization between IR wheat and jointed goatgrass in eastern Colorado, and (2) to determine the gene action of the IR acetolactate synthase (ALS) allele in IR wheat by jointed goatgrass and in IR wheat by imidazolinone-susceptible (IS) wheat backgrounds. Jointed goatgrass was sampled side-by-side with IR wheat and at distances up to 53 m away in both experimental plots and at commercial field study sites in 2003, 2004, and 2005. A greenhouse-screening method was used to identify IR hybrids in collected jointed goatgrass seed. The average percentage of hybridization across sites and years when IR wheat and jointed goatgrass were grown side-by-side was 0.1%, and the maximum was 1.6%. The greatest distance over which hybridization was documented was 16 m. The IR ALS allele contributed 25% of untreated ALS activity in jointed goatgrass by IR wheat F1 plants, as measured by an in vitro ALS assay. The hybridization rate between wheat and jointed goatgrass and the expression of the IR wheat ALS allele in hybrid plants will both influence trait introgression into jointed goatgrass.

Type
Weed Biology and Ecology
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alvarado, S. I., Crews, A. D., Wepplo, P. J., Doehner, R. F., Brady, T. E., Gange, D. M., and Little, D. L. 1992. Discovery of a new class of herbicides: sulfonyl carboxamides. ACS Symp. Ser. 504:7580.CrossRefGoogle Scholar
Baenziger, P. S., Beecher, B., and Graybosch, R. A. et al. 2006. Registration of ‘Infinity CL’ wheat. Crop Sci. 46:975977.CrossRefGoogle Scholar
Berg, J. E., Stougaard, R. N., and Cook, C. R. et al. 2006. Registration of ‘MT1159CL’ wheat. Crop Sci. 46:13951396.CrossRefGoogle Scholar
Donald, W. W. and Ogg, A. G. 1991. Biology and control of jointed goatgrass (Aegilops cylindrica), a review. Weed Technol. 5:317.CrossRefGoogle Scholar
Ellstrand, N. C., Prentice, H. C., and Hancock, J. F. 1999. Gene flow and introgression from domesticated plants into their wild relatives. Ann. Rev. Ecol. Syst. 30:539563.CrossRefGoogle Scholar
Gandhi, H. T., Mallory-Smith, C. A., Watson, C. J. W., Vales, M. I., Zemetra, R. S., and Riera-Lizarazu, O. 2006. Hybridization between wheat and jointed goatgrass (Aegilops cylindrica) under field conditions. Weed Sci. 54:10731079.CrossRefGoogle Scholar
Geier, P. W., Stahlman, P. W., White, A. D., Miller, S. D., Alford, C. M., and Lyon, D. J. 2004. Imazamox for winter annual grass control in imidazolinone-tolerant winter wheat. Weed Technol. 18:924930.CrossRefGoogle Scholar
Guadagnuolo, R., Savova-Bianchi, D., and Felber, F. 2001. Gene flow from wheat (Triticum aestivum L.) to jointed goatgrass (Aegilops cylindrica Host.), as revealed by RAPD and microsatellite markers. Theor. Appl. Genet. 103:18.CrossRefGoogle Scholar
Hails, R. S. and Morley, K. 2005. Genes invading new populations: a risk assessment perspective. Trends Ecol. Evol. 20:245252.CrossRefGoogle ScholarPubMed
Haley, S. D., Johnson, J. J., and Peairs, F. B. et al. 2006a. Registration of ‘Protection’ wheat. Crop Sci. 46:995996.CrossRefGoogle Scholar
Haley, S. D., Johnson, J. J., and Peairs, F. B. et al. 2006b. Registration of ‘Bond CL’ wheat. Crop Sci. 46:993995.CrossRefGoogle Scholar
Haley, S. D., Lazar, M. D., Quick, J. S., Johnson, J. J., Peterson, G. L., Stromberger, J. A., Clayshulte, S. R., Clifford, B. L., Pester, T. A., Nissen, S. J., Westra, P. H., Peairs, F. B., and Rudolph, J. B. 2003. Above winter wheat. Can. J. Plant Sci. 83:107108.CrossRefGoogle Scholar
Hanson, B. D., Mallory-Smith, C. A., Price, W. J., Shafii, B., Thill, D. C., and Zemetra, R. S. 2005. Interspecific hybridization: Potential for movement of herbicide resistance from wheat to jointed goatgrass (Aegilops cylindrica). Weed Technol. 19:674682.CrossRefGoogle Scholar
Hanson, B. D., Shaner, D. L., Westra, P., and Nissen, S. J. 2006. Response of selected hard red wheat lines to Imazamox as affected by number and location of resistance genes, parental background, and growth habit. Crop Sci. 46:12061211.CrossRefGoogle Scholar
Hegde, S. G. and Waines, J. G. 2004. Hybridization and introgression between bread wheat and wild and weedy relatives in North America. Crop Sci. 44:11451155.CrossRefGoogle Scholar
Jasieniuk, M., Brule-Babel, A. L., and Morrison, I. N. 1996. The evolution and genetics of herbicide resistance in weeds. Weed Sci. 44:176193.CrossRefGoogle Scholar
Kearsey, M. J. and Pooni, H. S. 1996. The genetical analysis of quantitative traits. 1st ed. New York Chapman & Hall. 1837.CrossRefGoogle Scholar
Kimber, G. and Sears, E. R. 1987. Evolution in the genus Triticum and the origin of cultivated wheat. in Heyne, E.G., ed. Wheat and Wheat Improvement. Agronomy Monogr. 13. Madison, WI American Society of Agronomy. 154164.Google Scholar
Kroiss, L. J., Tempalli, P., Hansen, J. L., Vales, M. I., Riera-Lizarazu, O., Zemetra, R. S., and Mallory-Smith, C. A. 2004. Marker-assessed retention of wheat chromatin in wheat (Triticum aestivum) by jointed goatgrass (Aegilops cylindrica) backcross derivatives. Crop Sci. 44:14291433.CrossRefGoogle Scholar
Lazar, M. D., Haley, S. D., and Quick, J. S. et al. 2003. AP502 CL winter wheat. Can. J. Plant Sci. 83:109110.CrossRefGoogle Scholar
Morrison, L. A., Cremieux, L. C., and Mallory-Smith, C. A. 2002a. Infestations of jointed goatgrass (Aegilops cylindrica) and its hybrids with wheat in Oregon wheat fields. Weed Sci. 50:737747.CrossRefGoogle Scholar
Morrison, L. A., Riera-Liazrazu, O., Cremieux, L., and Mallory-Smith, C. A. 2002b. Jointed goatgrass (Aegilops cylindrica Host) × wheat (Triticum aestivum L.) hybrids: hybridization dynamics in Oregon wheat fields. Crop Sci. 42:18631872.CrossRefGoogle Scholar
Nelder, J. A. 1962. New kinds of systematic designs for spacing experiments. Biometrics. 18:283307.CrossRefGoogle Scholar
Newhouse, K. E., Smith, W. A., Starrett, M. A., Schaefer, T. J., and Singh, B. K. 1992. Tolerance to imidazolinone herbicides in wheat. Plant Physiol. 100:882886.CrossRefGoogle ScholarPubMed
Pozniak, C. J., Birk, I. T., O'Donoughue, L. S., Menard, C., Hucl, P. J., and Singh, B. K. 2004. Physiological and molecular characterization of mutation-derived imidazolinone resistance in spring wheat. Crop Sci. 44:14341443.CrossRefGoogle Scholar
Pozniak, C. J. and Hucl, P. J. 2004. Genetic analysis of imidazolinone resistance in mutation-derived lines of common wheat. Crop Sci. 44:2330.Google Scholar
Quick, J. S., Ellis, G. E., Normann, R. M., Stromberger, J. A., Shanahan, J. F., Peairs, F. B., Rudolph, J. B., and Lorenz, K. 1996. Registration of ‘Halt’ wheat. Crop Sci. 36:210–210.Google Scholar
Quick, J. S., Stromberger, J. A., Clayshulte, S., Clifford, B., Johnson, J. J., Peairs, F. B., Rudolph, J. B., and Lorenz, K. 2001. Registration of ‘Prairie Red’ wheat. Crop Sci. 41:13621363.CrossRefGoogle Scholar
Rainbolt, C. R., Thill, D. C., Zemetra, R. S., and Shaner, D. L. 2005. Imidazolinone-resistant wheat acetolactate synthase in vivo response to imazamox. Weed Technol. 19:539548.CrossRefGoogle Scholar
SAS Institute Inc 2004. SAS OnlineDoc 9.1.3. Cary, NC SAS Institute Inc.Google Scholar
Schoenenberger, N., Felber, F., Savova-Bianchi, D., and Guadagnuolo, R. 2005. Introgression of wheat DNA markers from A, B and D genomes in early generation progeny of Aegilops cylindrica Host × Triticum aestivum L. hybrids. Theor. Appl. Genet. 111:13381346.CrossRefGoogle Scholar
Seefeldt, S. S., Zemetra, R., Young, F. L., and Jones, S. S. 1998. Production of herbicide-resistant jointed goatgrass (Aegilops cylindrica) × wheat (Triticum aestivum) hybrids in the field by natural hybridization. Weed Sci. 46:632634.CrossRefGoogle Scholar
Shaner, D. L., Anderson, P. C., and Stidham, M. A. 1984. Imidazolinones - Potent inhibitors of acetohydroxyacid synthase. Plant Physiol. 76:545546.CrossRefGoogle ScholarPubMed
Snyder, J. R., Mallory-Smith, C. A., Balter, S., Hansen, J. L., and Zemetra, R. S. 2000. Seed production on Triticum aestivum by Aegilops cylindrica hybrids in the field. Weed Sci. 48:588593.CrossRefGoogle Scholar
Souza, E. J., Lazar, M. D., Guttieri, M. J., Thill, D., and Rauch, T. 2006. Registration of ‘Idaho 587’ wheat. Crop Sci. 46:13871389.CrossRefGoogle Scholar
Stone, A. E. and Peeper, T. F. 2004. Characterizing jointed goatgrass (Aegilops cylindrica) × winter wheat hybrids in Oklahoma. Weed Sci. 52:742745.CrossRefGoogle Scholar
Stuber, C. W., Edwards, M. D., and Wendel, J. F. 1987. Molecular marker-facilitated investigations of quantitative trait loci in maize, 2: factors influencing yield and its component traits. Crop Sci. 27:639648.CrossRefGoogle Scholar
Tan, S. Y., Evans, R. R., Dahmer, M. L., Singh, B. K., and Shaner, D. L. 2005. Imidazolinone-tolerant crops: History, current status and future. Pest Manag. Sci. 61:246257.CrossRefGoogle ScholarPubMed
Tsuchiya, T. 1971. An improved acetocarmine squash technique, with special reference to the modified Rattenbury's method of making a preparation permanent. Barley Genet. Newsl. 1:7172.Google Scholar
Wang, Z. N., Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 2001. The fertility of wheat × jointed goatgrass hybrid and its backcross progenies. Weed Sci. 49:340345.CrossRefGoogle Scholar
Westerfeld, W. W. 1945. A colorimetric determination of blood acetoin. J. Biol. Chem. 161:495502.CrossRefGoogle Scholar
Zemetra, R. S., Hansen, J., and Mallory-Smith, C. A. 1998. Potential for gene transfer between wheat (Triticum aestivum) and jointed goatgrass (Aegilops cylindrica). Weed Sci. 46:313317.CrossRefGoogle Scholar