Skip to main content Accessibility help
×
Home

Johnsongrass (Sorghum halepense) Seed Dispersal in Corn Crops under Mediterranean Conditions

  • Judit Barroso (a1), Dionisio Andújar (a2), Carolina San Martín (a2), César Fernández-Quintanilla (a2) and José Dorado (a2)...

Abstract

Natural dissemination of johnsongrass seeds as well as the effect of combine harvesting on this process were studied in corn fields. The estimation of natural dispersal was carried out by two different methods, collecting seeds throughout the season using seed traps and sampling soil–surface seed abundance before harvest using a vacuum device. Both methods showed the same dispersal pattern. A minimum of 84.6% was dispersed in the first 2 m from the focus and a maximum of 1.6% was dispersed beyond the first 5 m. An average of 76.3% of these dispersed seeds were lost or buried after shedding but before harvest. Seed dispersal by the combine harvester was estimated from the difference between soil–surface seed abundance in the same sites pre and postharvest. Although the quantity of seeds dispersed by the combine was similar to those dispersed by natural factors, dispersal distances were significantly higher. Around 90% of the dispersed seeds were found in the first 5 m forward and backward of the combine direction from the infestation source, and 1.6% of the seeds were found beyond 22 m forward and 10 m backward of the combine direction from the infestation source. A large proportion of the seeds dispersed were dormant or not viable. It is concluded that the major role of sexual reproduction in johnsongrass population dynamics may be to spread the risks, promoting dispersal in time and space.

Copyright

Corresponding author

Corresponding author's E-mail: judit.barroso@montana.edu

References

Hide All
Andújar, D., Ruiz, D., Ribeiro, A., Fernández-Quintanilla, C., and Dorado, J. 2011. Spatial distribution patterns of johnsongrass (Sorghum halepense) in corn fields in Spain. Weed Sci. 59:8289.
Ballare, C. L., Scopel, A. L., Ghersa, C. M., and Sanchez, R. A. 1987. The demography of Datura ferox (L.) in soybean crops. Weed Res. 27:91102.
Barroso, J., Fernández-Quintanilla, C., Ruiz, D., Hernaiz, P., and Rew, L. J. 2004. Spatial stability of Avena sterilis ssp. ludoviciana populations under annual applications of low rates of imazamethabenz. Weed Res. 44:178186.
Barroso, J., Navarrete, L., Sánchez del Arco, M. J., Fernández-Quintanilla, C., Lutman, P. J. W., Perry, N. H., and Hull, R. I. 2006. Dispersal of Avena fatua and Avena sterilis patches by natural dissemination, soil tillage and combine harvesters. Weed Res. 46:118128.
Bendixen, L. E. 1986. Corn (Zea mays) yield in relationship to johnsongrass (Sorghum halepense) population. Weed Sci. 34:449451.
Blanco-Moreno, J. M., Chamorro, L., Masalles, R. M., Recasens, J., and Sans, F. X. 2004. Spatial distribution of Lolium rigidum seedlings following seed dispersal by combine harvesters. Weed Res. 44:375387.
Evans, D. M., Mcleod, J. J., Pascoe, L., and Memmott, J. 2009. The efficiency of a vacuum device for estimating soil-surface seed abundance on lowland farms. Weed Res. 49:337340.
Ghersa, C. M., Martinez-Ghersa, M. A., Satorre, E. H., Van Esso, M. L., and Chichotky, G. 1993. Seed dispersal, distribution and recruitment of seedlings of Sorghum halepense (L.) Pers. Weed Res. 33:7988.
Ghosheh, H. Z., Holshouser, D. L., and Chadler, J. M. 1996. Influence of density on johnsongrass (Sorghum halepense) interference in field corn (Zea mays). Weed Sci. 44:879883.
Harrington, G. T. 1916. Germination and viability tests of Johnson grass seed. Proc. Assoc. Official Seed Anal. 9:2428.
Harrington, G. T. 1917. Further studies of the germination of Johnson grass seeds. Proc. Assoc. Official Seed Anal. 10:7176.
Heijting, S., Van der Werf, W., and Kropff, M. J. 2009. Seed dispersal by forage harvester and rigid-tine cultivator in maize. Weed Res. 49:153163.
Holm, L. R. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds: Distribution and Biology. Honolulu, HI The University Press of Hawaii. Pp. 5461.
Horowitz, M. 1973. Spatial growth of Sorghum halepense . Weed Res. 13:200208.
Howard, C. L., Mortimer, A. M., Gould, P., Putwain, P. D., Cousens, R., and Cussans, G. W. 1991. The dispersal of weeds: seed movement in arable agriculture. Pages 821828 in Proc. of the Brighton Crop Protection Conference—Weeds. Lavenham, UK The Lavenham Press.
Leguizamon, E. S. 1986. Seed survival and patterns of seedling emergence in Sorghum halepense (L.) Pers. Weed Res. 26:397403.
Lolas, P. C. and Coble, H. D. 1982. Noncompetitive effects of johnsongrass (Sorghum halepense) on soybeans (Glycine max). Weed Sci. 30:589593.
Lovett Doust, L. 1981. Population dynamics and local specialization in a clonal perennial (Ranunculus repens). I. The dynamics of ramets in contrasting habitats. J. Ecol. 69:743755.
McCanny, S. J. and Cavers, P. B. 1988. Spread of proso millet (Panicum miliaceum L.) in Ontario, Canada. II. Dispersal by combines. Weed Res. 28:6772.
McWhorter, C. G. 1971. Growth and development of johnsongrass ecotypes. Weed Sci. 19:141147.
McWhorter, C. G. 1989. History, biology, and control of johnsongrass. Rev. Weed Sci. 4:85121.
Mitskas, M. B., Eleftherohorinos, I. G., and Damalas, C. A. 2003. Interference between corn and johnsongrass (Sorghum halepense) from seed or rhizomes. Weed Sci. 51:540545.
Penny, E. J., Kaminski, R. M., and Reinecke, K. J. 2006. A new device to estimate abundance of moist-soil plant seeds. Wildlife Soc. Bull. 34:186190.
Rew, L. J. and Cussans, G. W. 1997. Horizontal movement of seeds following tine and plough cultivation: implications for spatial dynamics of weed infestations. Weed Res. 37:247256.
Rew, L. J., Froud-Williams, R. J., and Boatman, N. D. 1996. Dispersal of Bromus sterilis and Anthriscus sylvestris seed within arable field margin. Agric. Ecosyst. Environ. 59:107114.
Scopel, A. L., Ballare, C. L., and Ghersa, C. M. 1988. Role of seed reproduction in the population ecology of Sorghum halepense in maize crops. J. Appl. Ecol. 25:951962.
Shirtliffe, S. J. and Entz, M. H. 2005. Chaff collection reduces seed dispersal of wild oat (Avena fatua) by a combine harvester. Weed Sci. 53:465470.
[SPSS] Statistical Product and Service Solutions. 2010. IBM SPSS® Amos™ 19 User's Guide. Chicago, IL SPSS Inc.
Taylorson, R. B. and McWhorter, C. G. 1969. Seed dormancy and germination in ecotypes of johnsongrass. Weed Sci. 17:359361.
Van Wychen, L. R., Luschei, E. C., Bussan, A. J., and Maxwell, B. D. 2002. Accuracy and cost effectiveness of GPS-assisted wild oat mapping in spring cereal crops. Weed Sci. 50:120129.
Westerman, P. R., Borza, J. K., Andjelkovic, J., Liebman, M., and Danielson, B. 2008. Density-dependent predation of weed seeds in maize field. J. Appl. Ecol. 45:16121620.

Keywords

Related content

Powered by UNSILO

Johnsongrass (Sorghum halepense) Seed Dispersal in Corn Crops under Mediterranean Conditions

  • Judit Barroso (a1), Dionisio Andújar (a2), Carolina San Martín (a2), César Fernández-Quintanilla (a2) and José Dorado (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.