Skip to main content Accessibility help

Investigation into the Mechanism of Isoxaben Tolerance in Dicot Weeds

  • Mark A. Schneegurt (a1), Dale R. Heim (a1) and Ignacio M. Larrinua (a1)


Isoxaben is an inhibitor of the synthesis of cellulose from glucose. Some dicot weed species are relatively insensitive to isoxaben inhibition. This study investigates mechanisms by which decreased sensitivity may occur in three dicot weed species: catchweed bedstraw, redroot pigweed, and velvetleaf. Dose response curves were generated to determine I50 values for the inhibition of glucose incorporation into cellulose by isoxaben and compared to that of a sensitive species, mouse-ear cress. Metabolic detoxification and uptake rates were measured and the degree of tolerance conferred by these mechanisms was calculated. In all cases, metabolic detoxification was negligible. Lower uptake rates were significant but minor components of tolerance in all species. It is suggested that the principal cause of isoxaben tolerance in these dicot weed species is decreased sensitivity at the target site.



Hide All
1. Burow, K. W. 1987. Benzamides, compositions and agricultural method. U.S. Patent No. 4,636,243.
2. Cabanne, A., Lefebvre, A., and Scalla, R. 1987. Behavior of the herbicide EL-107 in wheat and rape grown under controlled conditions. Weed Res. 24:135142.
3. Colbert, F. O. and Ford, D. H. 1987. Isoxaben for broadleaf weed control in ornamentals, turf and nonbearing trees and vines. Proc. West. Soc. Weed Sci. 40:155163.
4. Corio-Costet, M.-F., Dall' Agnese, M., and Scalla, R. 1991. Effects of isoxaben on sensitive and tolerant plant cells. I. Metabolic fate of isoxaben. Pestic. Biochem. Physiol. 40:246254.
5. Delmer, D. P. and Stone, B. A. 1988. Biosynthesis of cell walls. Pages 373420 in Preiss, J., ed. Plant Biochemistry. Vol. 14. Academic Press, New York.
6. Heim, D. R., Bjelk, L., James, J., Schneegurt, M. A., and Larrinua, I. M. 1993. Resistance of Agrostis palustris to isoxaben is due to decreased uptake and to diminished binding site sensitivity. J. Exp. Bot. 44:11851189.
7. Heim, D. R., Skomp, J. R., Tschabold, E. E., and Larrinua, I. M. 1990. Isoxaben specifically inhibits incorporation of 14C-glucose into acid insoluble material. Plant Physiol. 93:695700.
8. Heim, D. R., Skomp, J. R., Waldron, C., and Larrinua, I. M. 1991. Differential response to isoxaben of cellulose biosynthesis by wild-type and resistant strains of Arabidopsis thaliana . Pestic. Biochem. Physiol. 39:9399.
9. Huggenberger, F., Jennings, E. A., Ryan, P. J., and Burow, K. W. 1982. Isoxaben, a new selective herbicide for use in cereals. Proc. Br. Crop. Prot. Conf.-Weeds 1:4752.
10. Jensen, K. I. N. 1982. The roles of uptake, translocation, and metabolism in the differential intraspecific responses to herbicides. Pages 133162 in LeBaron, H. M. and Gressel, J., eds. Herbicide Resistance in Plants. John Wiley & Sons, New York.
11. Stoltenberg, D. E., Gronwald, J. W., Wyse, D. L., Burton, J. D., Somers, D. A., and Gengenbach, B. G. 1989. Effect of sethoxydim and haloxyfop on acetyl coenzyme A carboxylase activity in Festuca species. Weed Sci. 37:512516.
12. Technical Report on EL-107. 1987. An experimental herbicide for preemergence control of broadleaved weeds in established turf, ornamental plants and tree and vine crops. Lilly Res. Laboratories, Indianapolis.
13. Updegraff, M. 1969. Semimicrodetermination of cellulose in biological materials. Anal. Biochem. 32:420424.


Investigation into the Mechanism of Isoxaben Tolerance in Dicot Weeds

  • Mark A. Schneegurt (a1), Dale R. Heim (a1) and Ignacio M. Larrinua (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed