Skip to main content Accessibility help

Influence of Various Environmental Factors on Seed Germination and Seedling Emergence of a Noxious Environmental Weed: Green Galenia (Galenia pubescens)

  • Ako H. Mahmood (a1), Singarayer K. Florentine (a1), Bhagirath S. Chauhan (a2), David A McLaren (a3), Grant C. Palmer (a1) and Wendy Wright (a1)...


Green galenia is a South African woody prostrate perennial that was first recorded in Australia in the early 1900s and has since become a serious threat to indigenous temperate grasslands and surrounding agricultural areas. Laboratory and field based experiments were conducted to examine the effect of environmental factors on the germination and viability of green galenia seed. It was shown that green galenia was able to germinate over a broad range of temperatures, but short bursts (5 min) of high temperatures (80 C to 120 C replicating possible exposures to a fire) reduced seed germination. Seed germination was positively favored by light, declined rapidly in darkness, and decreased by > 80% at a depth of only 0.5 cm in soil. Water stress greatly reduced seed germination (45% germination at osmotic potentials below −0.2 MPa). Germination was completely inhibited at water potentials of −0.4 to −1.0 MPa. This species is moderately tolerant to salinity, with over 50% of seeds germinating at low levels of salinity (60 mM NaCl), and moderate germination (49%) occurring at 120 mM NaCl, it can germinate well in both alkaline (pH 10–83%) and acidic (pH 4–80%) conditions. The results of this study have contributed to our understanding of the germination and emergence of green galenia, and this will assist in developing tools and strategies for the long term management of this noxious weed in Victoria and other parts of Australia.


Corresponding author

Corresponding author's E-mail:


Hide All

Associate Editor for this paper: John L. Lindquist, University of Nebraska.



Hide All
Amri, E (2010) Germination of Terminalia sericea Buch ex Dc. seeds: effect of temperature regime, photoperiod, gibberellic acid and potassium nitrate. Am-Eurasian J Agri Env Sci 8: 722727
Arnold, TH, De Wet, BC (1993) Plants of southern Africa: names and distribution. National Botanical Institute South Africa, Silverton, South Africa, 825 p
Baskin, CC, Baskin, JM (1998) Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. New York: Elsevier. Pp 5676
Bebawi, FF, Campbell, SD, Mayer, RJ (2015) Seed bank longevity and age to reproductive maturity of Calotropis procera (Aiton) W.T. Aiton in the dry tropics of northern Queensland. Rang J 37: 239247
Benvenuti, S, Macchia, M, Miele, S (2001) Quantitative analysis of emergence of seedlings from buried weed seeds with increasing soil depth. Weed Sci 49: 528535
Beyranvand, H, Farnia, A, Nakhjavan, SH, Shaban, M (2013) Response of yield and yield components of maize (Zea mayz L.) to different bio fertilizers. Int J Adva Bio Biom Rese 1: 10681077
Bouwmeester, HJ, Karssen, CM (1992) The dual role of temperature in the regulation of the seasonal changes in dormancy and germination of seeds of Polygonum persicaria L. Oecologia 90: 8894
Brits, GJ, Calitz, FJ, Brown, NAC, Manning, JC (1993) Desiccation as the active principle in heat-stimulated seed germination of Leucospermum R. Br. (Proteaceae) in fynbos. New Phytologist 125: 397403
Carr, GW, Yugovic, JV, Robinson, KE (1992) Environmental Weed Invasions in Victoria: Conservation and Management Implications. Victoria, Australia: Department of Conservation and Environment and Ecological Horticulture. 78 p
Carta, A, Probert, R, Moretti, M, Peruzzi, L, Bedini, G (2014) Seed dormancy and germination in three Crocus ser. Verni species (Iridaceae): implications for evolution of dormancy within the genus. Plant Bio 16: 10651074
Chauhan, BS, Gurjeet, G, Christopher, P (2006) Factors affecting seed germination of annual sowthistle (Sonchus oleraceus) in southern Australia. Weed Sci 54: 854860
Chauhan, BS, Johnson, DE (2008a) Influence of environmental factors on seed germination and seedling emergence of eclipta (Eclipta prostrata) in a tropical environment. Weed Sci 56: 383388
Chauhan, BS, Johnson, DE (2008b) Seed germination and seedling emergence of giant sensitive plant (Mimosa invisa). Weed Sci 56: 244248
Chauhan, BS, Johnson, DE (2009) Seed germination and seedling emergence of synedrella (Synedrella nodiflora) in a tropical environment. Weed Sci 57: 3642
Çirak, C, Ayan, A, Kevseroglu, K, Çaliskan, Ö (2004) Germination rate of St. John's wort (Hypericum perforatum L.) seeds exposed to different light intensities and illumination periods. J Bio Sci 4: 279282
Clarke, S, French, K (2005) Germination response to heat and smoke of 22 Poaceae species from grassy woodlands. Aus J Bot 53: 445454
Cook, T (2013) Recent advances in galenia control. Plant Prot Quart 28: 9498
De Lange, JH, Boucher, C (1990) Autecological studies on Audouinia capitata (Bruniaceae). I. Plant-derived smoke as a seed germination cue. S Afr J Bot 56: 700703
El-Keblawy, A (2014) Effects of seed storage on germination of desert halophytes with transient seed bank. Pages 93103 in Ajmal Khan, M, Benno, B, Münir, Ö, Thabit, Z, Miguel, C, Bilquees, G, eds. Sabkha Ecosystems. Netherlands: Springer
Ferrari, FN, Parera, CA (2015) Germination of six native perennial grasses that can be used as potential soil cover crops in drip-irrigated vineyards in semiarid environs of Argentina. J Arid Env 113: 15
Florentine, SK, Westbrooke, ME, Gosney, K, Ambrose, G, O'Keefe, M (2006) The arid land invasive weed Nicotiana glauca R. Graham (Solanaceae): population and soil seed bank dynamics, seed germination patterns and seedling response to flood and drought. J Arid Env 66: 218230
García-de-Lomas, J, Cózar, A, Dana, ED, Hernández, I, Sánchez-García, Í, García, CM (2010) Invasiveness of Galenia pubescens (Aizoaceae): a new threat to Mediterranean-climate coastal ecosystems. Acta Oecol 36: 3945
Gashaw, M, Michelsen, A (2002) Influence of heat shock on seed germination of plants from regularly burnt savannah woodlands and grasslands in Ethiopia. Plant Eco 159: 8393
Goergen, K, Lynch, AH, Marshall, AG, Beringer, J (2006) Impact of abrupt land cover changes by savanna fire on northern Australian climate. J Geop Res: Atmo 111: 114
Grundy, AC, Mead, A, Burston, S (2003) Modelling the emergence response of weed seeds to burial depth: interactions with seed density, weight and shape. J Appl Eco 40: 757770
Huang, J, Redmann, RE (1995) Salt tolerance of Hordeum and Brassica species during germination and early seedling growth. Can J Plant Sci 75: 815819
Javaid, MM, Tanveer, A (2014) Germination ecology of Emex spinosa and Emex australis, invasive weeds of winter crops. Weed Res 54: 565575
Jefferson, LV, Pennacchio, M, Havens, K, Forsberg, B, Sollenberger, D, Ault, J (2008) Ex situ germination responses of Midwestern USA prairie species to plant-derived smoke. Am Mid Nat 159: 251256
Jeffery, DJ, Holmes, PM, Rebelo, AG (1988) Effects of dry heat on seed germination in selected indigenous and alien legume species in South Africa. S Afr J Bot 54: 2834
Kebreab, E, Murdoch, AJ (1999) A model of the effects of a wide range of constant and alternating temperatures on seed germination of four Orobanche species. Ann Bot 84: 549557
Kleinkopf, GE, Wallace, A, Hartsock, TL (1976) Galenia pubescens: Salt-tolerant, drought tolerant potential source of leaf protein. Plant Sci Let 7: 313320
Koutsovoulou, K, Daws, MI, Thanos, CA (2014) Campanulaceae: a family with small seeds that require light for germination. Ann Bot 113: 135143
Leuenberger, BE, Eggli, U (2002) Galenia pubescens (Aizoaceae), new to the South American flora. Bot Jahrbu Syst 123: 441445
Martinkova, Z, Honek, A, Lukas, J (2006) Seed age and storage conditions influence germination of barnyardgrass (Echinochloa crus-galli). Weed Sci 54: 298304
Michel, BE (1983) Evaluation of the water potentials of solutions of polyethylene glycol 8000 both in the absence and presence of other solutes. Plant Physiol 72: 6670
Milberg, P, Anderson, L, Thompson, K (2000) Large-seeded species are less dependent on light for germination than small-seeded ones. Seed Sci Res 10: 99104
Morgan, JW (1999) Defining grassland fire events and the response of perennial plants to annual fire in temperate grasslands of south-eastern Australia. Plant Eco 144: 127144
Morgan, JW (2001) Seedling recruitment patterns over 4 years in an Australian perennial grassland community with different fire histories. J Eco 89: 908919
Norsworthy, JK, Oliveira, MJ (2006) Sicklepod (Senna obtusifolia) germination and emergence as affected by environmental factors and seeding depth. Weed Sci 54: 903909
Pons, TL (2000) Seed responses to light. Pages 237257 in Michael, F, ed. Seeds: The Ecology of Regeneration in Plant Communities. New York: CABI Publishing
Prescott, A, Venning, J (1984) Aizoaceae. Pages 5052 in George, AS, ed. Flora of Australia. Canberra: Australian Government Publishing Service
Read, TR, Bellairs, SM, Mulligan, DR, Lamb, D (2000) Smoke and heat effects on soil seed bank germination for the re-establishment of a native forest community in New South Wales. Aust Eco 25: 4857
Ren, J, Tao, L, Liu, X-M (2002) Effect of sand burial depth on seed germination and seedling emergence of Calligonum L. species. J Arid Env 51: 603611
Ross, TS (1994) Galenia pubescens (Aizoaceae) new to the North American flora. Madrono 41: 226228
Russell-Smith, J, Allan, G, Thackway, R, Rosling, T, Smith, R (2000) Fire management and savanna landscapes in northern Australia. Pages 95101 in Proceedings of Canberra: Australian Centre for International Agricultural Research. Canberra, Australia: Australian Centre for International Agricultural Research
Saatkamp, A, Affre, L, Dutoit, T, Poschlod, P (2011) Germination traits explain soil seed persistence across species: the case of Mediterranean annual plants in cereal fields. Ann Bot 107: 415426
Smith, MA, Bell, DT, Loneragan, WA (1999) Comparative seed germination ecology of Austrostipa compressa and Ehrharta calycina (Poaceae) in a Western Australian Banksia woodland. Aus J Eco 24: 3542
Tang, W, Xu, X, Shen, G, Chen, J (2015) Effect of environmental factors on germination and emergence of aryloxyphenoxy propanoate herbicide-resistant and -susceptible Asia minor bluegrass (Polypogon fugax). Weed Sci 63: 669675
Tieu, A, Dixon, KW, Meney, KA, Sivasithamparam, K (2001) The interaction of heat and smoke in the release of seed dormancy in seven species from south-western Western Australia. Ann Bot 88: 259265
Todorović, S, Božić, D, Simonović, A, Filipović, B, Dragićević, M, Giba, Z, Grubišić, D (2010) Interaction of fire-related cues in seed germination of the potentially invasive species Paulownia tomentosa Steud. Plant Spe Bio 25: 193202
Van de Venter, HA, Esterhuizen, AD (1988) The effects of factors associated with fire on seed germination of Erica ses-siliflora and E. hebecalyx (Ericaceae). SA J Bot 54: 301304
Waes, JM, Debergh, PC (1986) Adaptation of the tetrazolium method for testing the seed viability, and scanning electron microscopy study of some Western European orchids. Phys Planta 66: 435442
Wang, JH, Baskin, CC, Cui, XL, Du, GZ (2009) Effect of phylogeny, life history and habitat correlates on seed germination of 69 arid and semi-arid zone species from northwest China. Evo Eco 23: 827846
Wijayratne, UC, Pyke, DA (2012) Burial increases seed longevity of two Artemisia tridentata (Asteraceae) subspecies. Am J Bot 99: 438447
Woolley, JT, Stoller, EW (1978) Light penetration and light-induced seed germination in soil. Plant Phys 61: 597600
Wright, BR, Clarke, PJ (2009) Fire, aridity and seed banks. What does seed bank composition reveal about community processes in fire-prone desert? J Veg Sci 20: 663674


Related content

Powered by UNSILO

Influence of Various Environmental Factors on Seed Germination and Seedling Emergence of a Noxious Environmental Weed: Green Galenia (Galenia pubescens)

  • Ako H. Mahmood (a1), Singarayer K. Florentine (a1), Bhagirath S. Chauhan (a2), David A McLaren (a3), Grant C. Palmer (a1) and Wendy Wright (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.