Skip to main content Accessibility help

Influence of leaf surface micromorphology, wax content, and surfactant on primisulfuron droplet spread on barnyardgrass (Echinochloa crus-galli) and green foxtail (Setaria viridis)

  • Debanjan Sanyal, Prasanta C. Bhowmik (a1) and Krishna N. Reddy (a2)


Laboratory studies were conducted to examine the leaf surface, epicuticular wax content, and spread area of primisulfuron spray droplet with and without surfactant on leaf surface of barnyardgrass and green foxtail. Adaxial and abaxial leaf surfaces were examined using scanning electron microscopy and leaf wax was extracted and quantified. The spread of 1-μl droplets of distilled water, primisulfuron solution (without surfactant), primisulfuron solution with a nonionic low foam wetter/spreader adjuvant (0.25% v/v), and with an organosilicone wetting agent (0.1% v/v) was determined on the adaxial leaf surfaces of each of the weed species. Stomata and trichomes were present on adaxial and abaxial leaf surfaces in both species. Green foxtail had more stomata per unit area on the adaxial as compared to the abaxial leaf surface. Barnyardgrass had more stomata on the abaxial than on the adaxial leaf surface. There was no significant variation in the number of trichomes per unit leaf area of green foxtail, and the number of prickles per unit area of leaf was significantly higher in adaxial than the abaxial leaf surface, in both young and old leaves. In barnyardgrass, there were more trichomes on abaxial than adaxial leaf surface. The mean value of the wax content per unit of leaf area in barnyardgrass and green foxtail was 35.9 μg cm−2 and 19.1 μg cm−2, respectively. On both species primisulfuron with a nonionic surfactant had more spread area than that without a surfactant, and the spread was even greater with organosilicone wetting agent. The spread area of primisulfuron droplet was higher on the leaf surface of barnyardgrass than on green foxtail when surfactant was added.


Corresponding author

Corresponding author. Department of Plant, Soil, and Insect Sciences, University of Massachusetts, Amherst, MA 01003


Hide All
Baker, E. A. 1982. Chemistry and morphology of plant epicuticular waxes. Pages 139166 in Cutler, D. F., Alvin, K. L., and Price, C. E. eds. The Plant Cuticle. London: Academic.
Bellinder, R. R., Arsenovic, M., Shah, D. A., and Rauch, B. J. 2003. Effect of weed growth stage and adjuvant on the efficacy of fomesafen and bentazon. Weed Sci 51:10161021.
Benzing, D. H. and Burt, K. M. 1970. Foliar permeability among twenty species of the Bromeliaceae. Bull. Torrey Bot. Club 97:269279.
Bhowmik, P. C. 1995. Integrated techniques for controlling Elytrigia repens populations. Pages 611618 in Proceedings of the 9th European Weed Research Society Symposium, Changes for Weed Science in a Changing Europe. Budapest, Hungary: Trybek.
Bhowmik, P. C. 1999. Effects of primisulfuron on quackgrass (Elytrigia repens) populations in corn (Zea mays). Pages 466471 in Proceedings of the 17th Asian-Pacific Weed Science Society Conference. Bangkok, Thailand: APWSS.
Bhowmik, P. C. and Reddy, K. N. 1988. Effects of barnyardgrass (Echinochloa crus-galli) on growth, yield, and nutrient status of transplanted tomato (Lycopersicon esculentum). Weed Sci 36:775778.
Blackshaw, R. E., Stobbe, E. H., and Sturko, A. R. W. 1981. Effect of seeding dates and densities of green foxtail (Setaria viridis) on the growth and productivity of spring wheat (Triticum aestivum). Weed Sci 29:212217.
Boize, L., Gudin, C., and Purdue, C. 1976. The influence of leaf surface roughness on the spreading of oil spray drops. Ann. Appl. Biol 84:205211.
Chachalis, D., Reddy, K. N., Elmore, C. D., and Steele, M. L. 2001. Herbicide efficacy, leaf structure, and spray droplet contact angle among Ipomoea species and small flower morningglory. Weed Sci 49:628634.
CPR. 2005. Pages 20722077 in Crop Protection Reference. 18th edition. New York: C & P.
Douglas, B. J., Thomas, A. G., Morrison, I. N., and Maw, M. G. 1985. The biology of Canadian weeds. 70. Setaria viridis (L.) Beauv. Can. J. Plant Sci 65:669690.
Eichert, T. and Burkhardt, J. 2001. Quantification of stomatal uptake of ionic solutes using a new model system. J. Exp. Bot 52:771781.
Eichert, T., Goldbach, H. E., and Burkhardt, J. 1998. Evidence for the uptake of large anions through stomatal pores. Botanica Acta 111:461466.
Ferreira, J. F. S. and Reddy, K. N. 2000. Absorption and translocation of glyphosate in Erythroxylum coca and E. novogranatense . Weed Sci 48:193199.
Gates, F. C. 1941. Weeds in Kansas. Topeka, KS: Kansas State Printing Plant. 360 p.
Green, J. M. 2002. Weed specificity of alcohol ethoxylate surfactants applied with rimsulfuron. Weed Technol 16:7983.
Gudin, C., Syratt, W. J., and Boize, L. 1976. The mechanisms of photosynthetic inhibition and the development of scorch in tomato plants treated with spray oils. Ann. Appl. Biol 84:213219.
Harr, J., Guggenheim, R., Schulke, G., and Falk, R. H. 1991. The Leaf Surface of Major Weeds. Champaign, IL: Sandoz Agro.
Hess, F. D. 1985. Herbicide absorption and translocation and their relationship to plant tolerances and susceptibility. Pages 191214 in Duke, S. O. ed. Weed Physiology. Volume II. Herbicide Physiology. Boca Raton, FL: CRC.
Hess, F. D., Bayer, D. E., and Falk, R. H. 1974. Herbicide dispersal patterns. 1. As a function of leaf surface. Weed Sci 22:394401.
Holloway, P. J. 1970. Surface factors affecting the wetting of leaves. Pestic. Sci 1:156163.
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The Worlds Worst Weeds: Distribution and Biology. Honolulu, HA: University of Hawaii Press. Pp. 3240.
Holm, L. G., Plucknett, D. L., Pancho, J. V., and Herberger, J. P. 1991. The World's Worst Weeds: Distribution and Biology. Malabar, FL: Krieger Publishing. 609 p.
Hull, H. M. 1970. Leaves structure as related to absorption of pesticides and other compounds. Pages 1155 in Gunther, F. A. and Gunther, J. D. eds. Residue Review. Volume 31. New York: Springer-Verlag.
Hull, H. M., Davis, D. G., and Stolzenberg, G. E. 1982. Actions of adjuvant on plant surface. Pages 2667 in Adjuvants for Herbicides. Lawrence, KS: Weed Science Society of America.
Johnson, H. E., Hazen, J. L., and Penner, D. 2002. Citric ester surfactants as adjuvants with herbicides. Weed Technol 16:867872.
Juniper, B. E. 1960. Growth, development, and the effect of environment on the ultrastructure of plant surfaces. J. Linn. Soc. Bot 56:413419.
Juniper, B. E. and Bradley, D. E. 1958. The carbon replica technique in the study of the ultrastructure of leaf surfaces. J. Ultrastruct. Res 2:1627.
Kirkwood, R. C., McKay, I., and Livingstone, R. 1982. The use of model systems to study the cuticular penetration of 14C-MCPA and 14C-MCPB. Pages 253266 in Cutler, D. F., Alvin, K. L., and Price, C. E. eds. The Plant Cuticle. Linn. Soc. Symp. Ser. 10. London: Academic.
Lopez-Martinez, N., Salva, A. P., Finch, R. P., Marshall, G., and De Prado, R. 1999. Molecular markers indicate intraspecific variation in the control of Echinochloa spp. with quinclorac. Weed Sci 47:310315.
McWhorter, C. G. 1985. The physiological effects of adjuvants on plants. Pages 141158 in Duke, S. O. ed. Weed Physiology. Volume II. Herbicide Physiology. Boca Raton, FL: CRC.
McWhorter, C. G. 1993. Epicuticular wax on johnsongrass (Sorghum halepense) leaves. Weed Sci 41:475482.
McWhorter, C. G., Ouzts, C., and Paul, R. N. 1993. Micromorphology of johnsongrass (Sorghum halepense) leaves. Weed Sci 41:583589.
Nandula, V. K., Curran, W. S., Roth, G. W., and Hartwig, N. L. 1995. Effectiveness of adjuvants with nicosulfuron and primisulfuron for wirestem muhly (Muhlenbergia frondosa) control in no till corn (Zea mays). Weed Technol 9:525530.
Norsworthy, J. K., Burgos, N. R., and Oliver, L. R. 2001. Differences in weed tolerance to glyphosate involve different mechanisms. Weed Technol 15:725731.
Paul, R. N., McWhorter, C. G., and Ouzts, J. C. 1992. An investigation into the ultrastructural histochemistry of glandular trichomes of johnsongrass [Sorghum halepense (L.) Pers.] leaves. Elect. Micro. Soc. Am 50:842843.
Sanyal, D., Bhowmik, P. C., and Reddy, K. N. 2006. Leaf characteristics and surfactants affect primisulfuron droplet spread in three broadleaf weeds. Weed Science 54:1622.
Staniforth, D. W. 1965. Competitive effect of three foxtail species on soybeans. Weeds 13:191193.
Stock, D. and Holloway, P. J. 1993. Possible mechanisms for surfactant induced foliar uptake of agrochemicals. Pestic. Sci 38:165177.
Strahan, R. E., Griffin, J. L., Jordan, D. L., and Miller, D. K. 2000. Influence of adjuvants on Itchgrass (Rottboellia cochinchinensis) control in corn (Zea mays) with nicosulfuron and primisulfuron. Weed Technol 14:6671.
Tweedy, M. J. and Kapusta, G. 1995. Nicosulfuron and primisulfuron eradicate rhizome johnsongrass (Sorghum halepense) in corn (Zea mays) in three years. Weed Technol 9:748753.
Underwood, A., Roberts, S., and Yopp, F. 2001. An overview of the commercial agrochemical and adjuvant markets and trends impacting each for the twenty-first century. Pages 608620 in de Ruiter, Hans ed. Sixth International Symposium on Adjuvants for Agrochemicals. Amsterdam, The Netherlands: ISAA 2001 Foundation.
VanDevender, K. W., Costello, T. A., and Smith, R. J. Jr. 1997. Model of rice (Oryza sativa) yield reduction as a function of weed interference. Weed Sci 45:218224.
Wanamarta, G. and Penner, D. 1989. Foliar absorption of herbicides. Rev. Weed Sci 4:215231.
Whitehouse, P., Holloway, P. J., and Caseley, J. C. 1982. The epicuticular wax of wild oats in relation to foliar entry of the herbicides diclofopmethyl and difenzoquat. Pages 315330 in Cutler, D. F., Alvin, K. L., and Price, C. E. eds. The Plant Cuticle. Linn. Soc. Symp. Ser. 10. London: Academic.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed