Skip to main content Accessibility help
×
Home

A Hydrothermal Seedling Emergence Model for Giant Ragweed (Ambrosia trifida)

  • Brian J. Schutte (a1), Emilie E. Regnier (a1), S. Kent Harrison (a1), Jerron T. Schmoll (a1), Kurt Spokas (a2) and Frank Forcella (a2)...

Abstract

Late-season giant ragweed emergence in Ohio crop fields complicates decisions concerning the optimum time to implement control measures. Our objectives were to develop a hydrothermal time emergence model for a late-emerging biotype and validate the model in a variety of locations and burial environments. To develop the model, giant ragweed seedlings were counted and removed weekly each growing season from 2000 to 2003 in a fallow field located in west central Ohio. Weather data, soil characteristics and geographic location were used to predict soil thermal and moisture conditions with the Soil Temperature and Moisture Model (STM2). Hydrothermal time (θHT) initiated March 1 and base values were extrapolated from the literature (Tb = 2 C, ψb = −10 MPa). Cumulative percent emergence initially increased rapidly and reached 60% of maximum by late April (approximately 400 θHT), leveled off for a period in May, and increased again at a lower rate before concluding in late July (approximately 2,300 θHT). The period in May when few seedlings emerged was not subject to soil temperatures or water potentials less than the θHT base values. The biphasic pattern of emergence was modeled with two successive Weibull models that were validated in 2005 in a tilled and a no-tillage environment and in 2006 at a separate location in a no-tillage environment. Root-mean-square values for comparing actual and model predicted cumulative emergence values ranged from 8.0 to 9.5%, indicating a high degree of accuracy. This experiment demonstrated an approach to emergence modeling that can be used to forecast emergence on a local basis according to weed biotype and easily obtainable soil and weather data.

Copyright

Corresponding author

Corresponding author's E-mail: brian.schutte@ars.usda.gov

References

Hide All
Abul-Fatih, H. A. and Bazzaz, F. A. 1979. The biology of Ambrosia trifida L. II. Germination, emergence, growth and survival. New Phytol. 83:817827.
Benech-Arnold, R. L. and Sánchez, R. A. 1995. Modeling weed seed germination. Pages 545566. in Kigel, J. and Galili, G. Seed Development and Germination. New York, NY Marcel Dekker.
Benech-Arnold, R. L., Sanchez, R. A., Forcella, F., Kruk, B. C., and Ghersa, C. M. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 67:105122.
Bradford, K. J. 1996. Population-based models describing seed dormancy behaviour: implications for experimental design and interpretation. Pages 313339. in Lang, G. A. Plant Dormancy: Physiology, Biochemistry and Molecular Biology. Wallingford, UK CAB International.
Brainard, D. C., DiTommaso, A., and Mohler, C. L. 2006. Intraspecific variation in germination response to ammonium nitrate of Powell amaranth (Amaranthus powellii) seeds originating from organic vs. conventional vegetable farms. Weed Sci. 54:435442.
Brown, R. F. and Mayer, D. G. 1988. Representing cumulative germination. 2. The use of the Weibull function and other empirically derived curves. Ann. Bot. 61:127138.
Campbell, G. S. 1977. An Introduction to Environmental Biophysics. New York Springer-Verlag. 131.
Clements, D. R., DiTommaso, A., Jordan, N., Booth, B. D., Cardina, J., Doohan, D., Mohler, C. L., Murphy, S. D., and Swanton, C. J. 2004. Adaptability of plants invading North American cropland. Agric. Ecosyst. Environ. 104:379398.
Egley, G. H. and Williams, R. D. 1991. Emergence periodicity of six summer annual weed species. Weed Sci. 39:595600.
Ekeleme, F., Forcella, F., Archer, D. W., Akobundu, I. O., and Chikoye, D. 2005. Seedling emergence model for tropic ageratum (Ageratum conyzoides). Weed Sci. 53:5561.
Forcella, F. 1998. Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci. Res. 8:201209.
Forcella, F., Benech-Arnold, R. L., Sanchez, R. A., and Ghersa, C. M. 2000. Modeling seedling emergence. Field Crops Res. 67:123139.
Gibson, K. D., Johnson, W. G., and Hillger, D. E. 2005. Farmer perceptions of problematic corn and soybean weeds in Indiana. Weed Technol. 19:10651070.
Grundy, A. C. 2003. Predicting weed emergence: a review of approaches and future challenges. Weed Res. 43:111.
Grundy, A. C. and Mead, A. 2000. Modeling weed emergence as a function of meteorological records. Weed Sci. 48:594603.
Grundy, A. C., Peters, N. C. B., Rasmussen, I. A., Hartmann, K. M., Sattin, M., Andersson, L., Mead, A., Murdoch, A. J., and Forcella, F. 2003. Emergence of Chenopodium album and Stellaria media of different origins under different climatic conditions. Weed Res. 43:163176.
Gummerson, R. J. 1986. The effect of constant temperature and osmotic potentials on the germination of sugar beat. J. Exp. Bot. 37:729741.
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Harrison, J. M. 2007. Seed size and burial effects on giant ragweed (Ambrosia trifida) emergence and seed demise. Weed Sci. 55:1622.
Harrison, S. K., Regnier, E. E., Schmoll, J. T., and Webb, J. E. 2001. Competition and fecundity of giant ragweed in corn. Weed Sci. 49:224229.
Hartnett, D. C., Hartnett, B. B., and Bazzaz, F. A. 1987. Persistence of Ambrosia trifida populations in old fields and responses to successional changes. Am. J. Bot. 74:12391248.
Jana, S. and Thai, K. M. 1987. Patterns of changes of dormant genotypes in Avena fatua populations under different agricultural conditions. Can. J. Bot. 65:17411745.
Leishman, M. R., Wright, I. J., Moles, A. T., and Westoby, M. 2000. The evolutionary ecology of seed size. Pages 3158. in Fenner, M. Seeds: The Ecology of Regeneration in Plant Communities. 2nd ed. New York, NY CAB International.
Leon, R. G., Bassham, D. C., and Owen, M. D. K. 2006. Germination and proteome analyses reveal intraspecific variation in seed dormancy regulation in common waterhemp (Amaranthus tuberculatus). Weed Sci. 54:305315.
Mayer, D. G. and Butler, D. G. 1993. Statistical validation. Ecol. Model. 68:2132.
Michael, P. J., Steadman, K. J., and Plummer, J. A. 2006. Climatic regulation of seed dormancy and emergence of diverse Malva parviflora populations from a Mediterranean-type environment. Seed Sci. Res. 16:273281.
Mortimer, A. M. 1997. Phenological adaptation in weeds—an evolutionary response to the use of herbicides. Pestic. Sci. 51:299304.
Myers, M., Curran, W. S., VanGessel, M. J., Calvin, D. D., Mortensen, D. A., Majek, B. A., Kartsen, H. D., and Roth, G. W. 2004. Predicting weed emergence for eight annual species in the northeastern United States. Weed Sci. 52:913919.
Naylor, J. M. and Jana, S. 1976. Genetic adaptation for seed dormancy in Avena fatua . Can. J. Bot. 54:306312.
Ogg, A. G. and Dawson, J. H. 1984. Time of emergence of eight weed species. Weed Sci. 32:327335.
Roman, E. S., Murphy, S. D., and Swanton, C. J. 2000. Simulation of Chenopodium album seedling emergence. Weed Sci. 48:217224.
Sako, Y., Regnier, E. E., Daoust, T., Fujimura, K., Harrison, S. K., and McDonald, M. B. 2001. Computer image analysis and classification of giant ragweed seeds. Weed Sci. 49:738745.
Schutte, B. J., Regnier, E. E., and Harrison, S. K. 2006a. Dissection of divergent emergence patterns in agricultural and successional giant ragweed populations. Proc. Weed Sci. Soc. Am. 46:49.
Schutte, B. J., Regnier, E. E., and Harrison, S. K. 2006b. Maternal plant as sources of emergence variation within giant ragweed (Ambrosia trifida L.) populations. Abstr. Weed. Sci. Soc. Am. 46:29.
Shrestha, A., Roman, E. S., Thomas, A. G., and Swanton, C. J. 1999. Modeling germination and shoot-radicle elongation of Ambrosia artemisiifolia . Weed Sci. 47:557562.
Spokas, K. and Forcella, F. 2006. Estimating hourly incoming solar radiation from limited meteorological data. Weed Sci. 54:182189.
Spokas, K., Forcella, F., Archer, D., Peterson, D., and Miller, S. 2007. Improving weed germination models by incorporating seed microclimate and translocation by tillage. Proc. Weed Sci. Soc. Am. 44:60.
Sprague, C. L., Wax, L. M., Hartzler, R. G., and Harrison, S. K. 2004. Variations in emergence patterns of giant ragweed biotypes from Ohio, Illinois, and Iowa. Abstr. Weed Sci. Soc. Am. 44:60.
Vleeshouwers, L. M. 1997. Modelling the effect of temperature, soil penetration resistance, burial depth and seed weight on pre-emergence growth of weeds. Ann. Bot. 79:553563.
Webster, T. M., Loux, M. M., Regnier, E. E., and Harrison, S. K. 1994. Giant ragweed (Ambrosia trifida) canopy architecture and interference studies in soybean (Glycine max). Weed Technol. 8:559564.

Keywords

A Hydrothermal Seedling Emergence Model for Giant Ragweed (Ambrosia trifida)

  • Brian J. Schutte (a1), Emilie E. Regnier (a1), S. Kent Harrison (a1), Jerron T. Schmoll (a1), Kurt Spokas (a2) and Frank Forcella (a2)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed