Skip to main content Accessibility help

Higher Tolerance to Abiotic Stresses and Soil Types May Accelerate Common Ragweed (Ambrosia artemisiifolia) Invasion

  • Huseyin Onen (a1), Shahid Farooq (a1), Hikmet Gunal (a2), Cumali Ozaslan (a3) and Halil Erdem (a2)...


Common ragweed is a troublesome allergenic invader and noxious weed of several crops. Despite extensive research to understand the factors affecting its invasion, the role of environmental stresses and soil types on survival and growth is poorly understood. The objective of this study was to determine the effects of drought, salinity, and soil types on survival, growth, and nutrient uptake of ragweed in greenhouse experiments to predict its invasiveness in Turkey. Three separate experiments, with five drought intensities (100, 75, 50, 25, and 12.5% of field capacity [FC]), four levels of salinity (0, 3, 6, and 12 dS m−1), and five soil types varying in sand, silt, and clay content were performed. Severe drought and salinity levels reduced seedling survival, while soil type had no effect. Increasing drought and salinity negatively affected growth and nutrient uptake; the poorest growth was observed under severe drought intensity. Ragweed exhibited intensive tolerance to drought, even severe levels, while it tolerated salinity up to 6 dS m−1 for seedling survival. Growth was negatively affected above 3 dS m−1. The highest and lowest nutrient accumulations were recorded under moderate and extreme drought intensities, respectively. Similarly, the highest Na accumulation was observed under extreme saline conditions, whereas the highest P uptake and K/Na ratio were achieved under nonsaline conditions (0 dS m−1). Variation of soil texture had no effect on growth and nutrient uptake. The highest Ca, Mg, and Na accumulations were recorded on clay soil, while higher P accrued on sandy-loam soil. Increased tolerance of ragweed to severe drought and moderate salinity and its nonselective nature for soil type indicate that semiarid and partially arid regions in Turkey have plenty of vacant niches for ragweed invasion.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Higher Tolerance to Abiotic Stresses and Soil Types May Accelerate Common Ragweed (Ambrosia artemisiifolia) Invasion
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Higher Tolerance to Abiotic Stresses and Soil Types May Accelerate Common Ragweed (Ambrosia artemisiifolia) Invasion
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Higher Tolerance to Abiotic Stresses and Soil Types May Accelerate Common Ragweed (Ambrosia artemisiifolia) Invasion
      Available formats


Corresponding author

*Corresponding author’s E-mail:


Hide All

Associate Editor for this paper: Bhagirath Chauhan, The University of Queensland.



Hide All
Ahmad, N, Khan, MB, Farooq, S, Shahzad, M, Farooq, M, Hussain, M (2015) Potassium nutrition improves the maize productivity under water deficit conditions. Soil Environ 34:1526
Aikio, S, Markkola, AM (2002) Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availability. Evol Ecol 16:6776
Araujo, MB, Alagador, D, Cabeza, M, Nogues-Bravo, D, Thuiller, W (2011) Climate change threatens European conservation areas. Ecol Lett 14:484492
Arslan, ZF, Uludag, A, Uremis, I (2015) Status of invasive alien plants included in EPPO Lists in Turkey. EPP/EPPO Bulletin 45:6672
Asch, F, Dingkuhn, M, Miezan, K, Dörffling, K (2000) Leaf K/Na ratio predicts salinity induced yield loss in irrigated rice. Euphytica 113:109118
Barton, CJ (1948) Photometric analysis on phosphate rock. Ind Anal Eng Chem 20:10681073
Bassett, IJ, Crompton, CW (1975) The biology of Canadian Weeds. 11. Ambrosia artemisiifolia L. and A. psilostachya DC. Can J Plant Sci 55:463476
Bataglia, OC, Furlani, AMC, Teixeira, JPF, Furlani, PR, Gallo, JR (1983) Métodos de análise química de plantas. Brazil: Instituto Agronomico, Campinas
Bengough, AG, McKenzie, BM, Hallett, PD, Valentine, TA (2011) Root elongation, water stress, and mechanical impedance: a review of limiting stresses and beneficial root tip traits. J Exp Bot 62:5968
Beringer, H, Trolldenier, G (1978) Influence of K nutrition on the response to environmental stress. Pages 189–222 in Proceedings of the 11th Congress of the International Potash Institute. Bern, Switzerland: International Potash Institute
Bernstein, N, Kafkafi, U (2002) Root growth under salinity stress. Pages 787819 in Waisel Y, Eshel A, Kafkafi U, eds. Plant Roots: The Hidden Half. 3rd edn. New York: Dekker
Blackburn, TM, Lockwood, JL, Cassey, P (2015) The influence of numbers on invasion success. Mol Ecol 24:19421953
Blackburn, TM, Prowse, TAA, Lockwood, JL, Cassey, P (2013) Propagule pressure as a driver of establishment success in deliberately introduced exotic species: fact or artefact? Biol Invasions 15:14591469
Brauer, J, Geber, MA (2002) Population differentiation in the range expansion of a native maritime plant, Solidago sempervirens L. Int J Plant Sci 163:141150
Burns, JH (2004) A comparison of invasive and noninvasive dayflowers (Commelinaceae) across experimental nutrient and water gradients. Divers Distrib 10:387397
Burns, JH (2006) Relatedness and environment affect traits associated with invasive and noninvasive introduced Commelinaceae. Ecol Appl 16:13671376
Byfield, A, Baytop, A (1998) Three alien species new to the flora of Turkey. Turk J Bot 22:205208
Caswell, H, Lensink, R, Neubert, MG (2003) Demography and dispersal: life table response experiments for invasion speed. Ecology 84:19681978
Chapman, DS, Haynes, T, Beal, S, Essl, F, Bullock, JM (2014) Phenology predicts the native and invasive range limits of common ragweed. Glob Chang Biol 20:192202
Chauhan, BS (2013) Growth response of itchgrass (Rottboellia cochinchinensis) to water stress. Weed Sci 61:98103
Chauhan, BS, Johnson, DE (2010) Growth and reproduction of jungle rice (Echinochloa colona) in response to water-stress. Weed Sci 58:132135
Chown, SL, Hodgins, KA, Griffin, PC, Oakeshott, JG, Byrne, M, Hoffmann, AA (2015) Biological invasions, climate change and genomics. Evol Appl 8:2346
Chrenova, J, Micieta, K, Scevkova, J (2009) Monitoring of Ambrosia pollen concentration in the atmosphere of Bratislava (Slovakia) during years 2002–2007. Aerobiologia 26:8388
Cuin, TA, Miller, AJ, Laurie, SA, Leigh, R A (2003) Potassium activities in cell compartments of salt-grown barley leaves. J Exp Bot 54:657661
Davenport, RJ, Tester, M (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat. Plant Physiol 122:823834
Davidson, AM, Jennions, M, Nicotra, AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419431
Davis, MA, Grime, JP, Thompson, K (2000) Fluctuating resources in plant communities: a general theory of invasibility. J Ecol 88:528534
Dawson, TP, Jackson, ST, House, JI, Prentice, IC, Mace, GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332:5358
DiTommaso, A (2004) Germination behavior of common ragweed (Ambrosia artemisiifolia) populations across a range of salinities. Weed Sci 52:10021009
Dong, XH, Yue, GZH (2010) Effects on growth of Tamarix hispida Willd. under salt stress. Acta Agric Bor Sin 25:154155
Eom, SH, DiTommaso, A, Weston, LA (2013) Effects of soil salinity in the growth of Ambrosia artemisiifolia biotypes collected from roadside and agricultural field. J Plant Nutr 36:21912204
Eshel, G, Levy, J, Mingelgrin, U, Singer, MJ (2004) Critical evaluation of the use of laser diffraction for particle-size distribution analysis. Soil Sci Soc Am J 68:736743
Essl, F, Biró, K, Brandes, D, Broennimann, O, Bullock, JM, Chapman, DS, Chauvel, B, Dullinger, S, Fumanal, B, Guisan, A, Karrer, G, Kazinczi, G, Kueffer, C, Laitung, B., Lavoie, C, Leitner, M, Mang, T, Moser, D, Müller-Schärer, H, Petitpierre, B, Richter, R, Schaffner, U, Smith, M, Starfinger, U, Vautard, R, Vogl, G, von der Lippe, M, Follak, S (2015) Biological flora of the British Isles: Ambrosia artemisiifolia . J Ecol 104:10691098
Fumanal, B, Girod, C, Fried, G, Bretagnolle, F, Chauvel, B (2008) Can the large ecological amplitude of Ambrosia artemisiifolia explain its invasive success in France? Weed Res 48:349359
Greenway, H, Munns, R (1980) Mechanisms of salt tolerance in nonhalophytes. Annu Rev Psychol 31:149190
Grime, JP (2001) Plant Strategies and Vegetation Processes and Ecosystem Properties, 2nd edn. Chichester, UK: Wiley
Hellmann, JJ, Byers, JE, Bierwagen, BG, Dukes, JS (2008) Five potential consequences of climate change for invasive species. Conserv Biol 22:534543
Hu, Y, Schmidhalter, U (2001) Effects of salinity and macronutrient levels on micronutrients in wheat. J Plant Nutr 24:273281
Hulme, PE, Pyšek, P, Jarošík, V, Pergl, J, Schaffner, U, Vila, M (2013) Bias and error in understanding plant invasion impacts. Trends Ecol Evol 28:212218
Ioneva, ZS (1988) Effect of potassium ion Na+ uptake by plants in conditions of chloride salinity. Fiziolo Rasten 14:4247
Jbir, N, Chaibi, W, Ammar, S, Jemmali, A, Ayadi, A (2001) Root growth and lignification of two wheat species differing in their sensitivity to NaCl, in response to salt stress. CR Acad Sci III-Vie 324:863868
Kasprzyk, I, Myszkowska, D, Grewling, L, Stach, A, Sikoparija, B, Skjoth, CA, Smith, M (2011) The occurrence of Ambrosia pollen in Rzeszów, Kraków and Poznań, Poland: investigation of trends and possible transport of Ambrosia pollen from Ukraine. Int J Biometeorol 55:633644
Klironomos, JN (2002) Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature 417:6770
Kuiper, PJC (1984) Function of plant cell membranes under saline conditions: membrane lipid composition and ATPases. Pages 7791 in Staples RC, Toenniesses GH, eds. Salinity Tolerance in Plants. New York: Wiley-Interscience
Laube, J, Ziegler, Sparks, TH, Estrella, N, Menzel, A (2015) Tolerance of alien plant species to extreme events is comparable to that of their native relatives. Preslia 87:3153
Leiblein, MC, Losch, R (2011) Biomass development and CO2 gas exchange of Ambrosia artemisiifolia L. under different soil moisture conditions. Flora 206:511516
Leskovšek, R, Datta, A, Knezevic, SZ, Simoncic, A (2012b) Common ragweed (Ambrosia artemisiifolia) dry matter allocation and partitioning under different nitrogen and density levels. Weed Biol Manag 12:98108
Leskovšek, R, Eler, K, Batic, F, Simoncic, A (2012a) The influence of nitrogen, water and competition on the vegetative and reproductive growth of common ragweed (Ambrosia artemisiifolia L.). Plant Ecol 213:769781
Liu, J, Xia, J, Fang, Y, Li, T, Liu, J (2014) Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings. Sci World J 2014:765840
Makra, L, Juhasz, M, Beczi, R, Borsos, E (2005) The history and impacts of airborne Ambrosia (Asteraceae) pollen in Hungary. Grana 44:5764
McConnaughay, KDM, Coleman, JS (1999) Biomass allocation in plants: ontogeny or optimality? A test along three resource gradients. Ecol 80:25812593
Moles, AT, Flores-Moreno, H, Bonser, SP, Warton, DI, Helm, A, Warman, L, Eldridge, DJ, Jurado, E, Hemmings, FA, Reich, PB, Cavender-Bares, J, Seabloom, EW, Mayfield, MM, Sheil, D, Djietror, JC, Peri, PL, Enrico, L, Cabido, MR, Setterfield, SA, Lehmann, CE, Thomson, FJ (2012) Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J Ecol 100:116127
Ngom, R, Gosselin, P (2014) Development of a remote sensing-based method to map likelihood of common ragweed (Ambrosia artemisiifolia) presence in urban areas. IEEE J Sel Topics Appl Earth Observ 7:126139
Onen, H, Gunal, H, Ozcan, S (2014) The Black Sea highway: the route of common ragweed (Ambrosia artemisiifolia L.) invasion in Turkey. Page 76 in Proceedings of the 8th International Conference on Biological Invasions: From Understanding to Action. Antalya,Turkey: XMAT
Onen, H, Ozaslan, C, Akyol, N (2015) Ambrosia artemisiifolia L. in Onen H, ed. Invasive Plants Catalogue of Turkey [in Turkish]. Ankara, Turkey
Ozaslan, C, Onen, H, Farooq, S, Gunal, H, Akyol, N (2016) Common ragweed: an emerging threat for sunflower production and human health in Turkey. Weed Biol Manag 1:4255
Petitpierre, B, Kueffer, C, Broennimann, O, Randin, C, Daehler, C, Guisan, A (2012) Climatic niche shifts are rare among terrestrial plant invaders. Science 335:13441348
Poorter, H, Remkes, C, Lambers, H (1990) Carbon and nitrogen economy of 24 wild species differing in relative growth rate. Plant Physiol 94:621627
Pysek, P, Chytry, M, Pergl, J, Sadlo, J, Wild, J (2012) Plant invasions in the Czech Republic: current state, introduction dynamics, invasive species and invaded habitats. Preslia 84:575630
Pysek, P, Richardson, DM (2007) Traits associated with invasiveness in alien plants: where do we stand? Pages 97125 in Nentwig W, ed, Biological Invasions. Berlin: Springer-Verlag
Rewald, B, Shelef, O, Ephrath, JE, Rachmilevitch, S (2013) Adaptive plasticity of salt-stressed root systems. Pages 169202 in Ahmad P, Azooz MM, Prasad MNV, eds. Ecophysiology and responses of plants under salt stress. New York: Springer
Rothfels, CJ, Bearon, LL, Dudley, SA (2002) The effects of salt, manganese, and density of life history traits in Hesperis matronalis L. from old field and roadside populations. Can J Bot 80:131139
Sangakkara, UR, Frehner, M, Nösberger, J (2001) Influence of soil moisture and fertilizer potassium on the vegetative growth of mungbean (Vigna radiate L. Wilczek) and cowpea (Vigna unguiculata L. Walp). J Agron Crop Sci 186:7381
Sarangi, D, Irmak, S, Lindquist, JL, Knezevic, SZ, Jhala, AJ (2016) Effect of water stress on the growth and fecundity of common waterhemp (Amaranthus rudis). Weed Sci 64:4252
Simberloff, D (2009) The role of propagule pressure in biological invasions. Annu Rev Ecol Evol Syst 40:81102
Skalova, H, Moravcova, L, Dixon, AFG, Kindlmann, P, Pysek, P (2015) Effect of temperature and nutrients on the growth and development of seedlings of an invasive plant. AoB Plants 7:plv044
Soberon, J (2007) Grinnellian and Eltonian niches and geographic distributions of species. Ecol Lett 10:11151123
Steadman, KJ, Ellery, AJ, Chapman, R, Moore, A, Turner, NC (2004) Maturation temperature and rainfall influence seed dormancy characteristics of annual ryegrass (Lolium rigidum). Aust J Agric Res 55:10471057
Storkey, J, Stratonovitch, P, Chapman, DS, Vidotto, F, Semenov, MA (2014) A process-based approach to predicting the effect of climate change on the distribution of an invasive allergenic plant in Europe. PLoS ONE 9:e88156
Svenning, JC, Fløjgaard, C, Marske, KA, Nógues-Bravo, D, Normand, S (2011) Applications of species distribution modeling to paleobiology. Quat Sci Rev 30:29302947
Ünlükara, A, Kurunç, A, Kesmez, GD, Yurtseven, E (2008) Growth and evapotranspiration of okra (Abelmoschus esculentus L.) as influenced by salinity of irrigation water. J Irrig Drain Eng 134:160166
Vila, M, Espinar, JL, Hejda, M, Hulme, PE, Jarosik, V, Maron, JL, Pergl, J, Schaffner, U, Sun, Y, Pysek, P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702708
Webster, TM, Grey, TL (2008) Growth and reproduction of Benghal dayflower (Commelina benghalensis) in response to drought stress. Weed Sci 56:561566
Wiens, JJ, Ackerly, DD, Allen, AP, Anacker, BL, Buckley, LB, Cornell, HV, Damschen, EI, Davies, TJ, Grytnes, JA, Harrison, SP, Hawkins, BA, Holt, RD, McCain, CM, Stephens, PR (2010) Niche conservatism as an emerging principle in ecology and conservation biology. Ecol Lett 13:13101324
Willemsen, RW (1975) Effect of stratification temperature and germination temperature on germination and the induction of secondary dormancy in common ragweed seeds. Am J Bot 62:15
Xie, ZY, Zhang, WH, Liu, XC (2010) Growth and physiological characteristics of Xanthoceras sorbifolia seedlings under soil drought stress. Acta Bot Boreal-Occident Sin 30:948954
Yang, Sh. H, Ji, J, Wang, G (2006) Effects of salt stress on plants and the mechanism of salt tolerance. World Science-Technology Research & Development 28:7076
Zemmer, F, Karaca, F, Ozkaragoz, F (2012) Ragweed pollen observed in Turkey: detection of sources using back trajectory models. Sci Total Environ 430:101108
Zhu, JK, Liu, J, Xiong, L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell Online 10:11811192
Ziska, LH, Blumenthal, DM, Runion, GB, Hunt, ER, Diaz- Soltero, H (2011) Invasive species and climate change: an agronomic perspective. Clim Chang 105:1342


Related content

Powered by UNSILO

Higher Tolerance to Abiotic Stresses and Soil Types May Accelerate Common Ragweed (Ambrosia artemisiifolia) Invasion

  • Huseyin Onen (a1), Shahid Farooq (a1), Hikmet Gunal (a2), Cumali Ozaslan (a3) and Halil Erdem (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.