Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-19T17:11:41.677Z Has data issue: false hasContentIssue false

Glyphosate-Resistant Goosegrass (Eleusine indica) Confirmed in Tennessee

Published online by Cambridge University Press:  20 January 2017

Thomas C. Mueller*
Affiliation:
Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences Bldg., 2431 Joe Johnson Dr., Knoxville, TN 37996
Kelly A. Barnett
Affiliation:
Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences Bldg., 2431 Joe Johnson Dr., Knoxville, TN 37996
James T. Brosnan
Affiliation:
Department of Plant Sciences, University of Tennessee, 252 Ellington Plant Sciences Bldg., 2431 Joe Johnson Dr., Knoxville, TN 37996
Lawrence E. Steckel
Affiliation:
Department of Plant Sciences, University of Tennessee, Jackson, TN 38301
*
Corresponding author's E-mail: tmueller@utk.edu

Abstract

Goosegrass is a problematic summer annual weed in cotton, soybean, and corn production in the southern United States. Glyphosate is labeled for POST control of goosegrass in glyphosate-resistant (GR) cotton, soybean, and corn production. A population of goosegrass in west Tennessee not controlled by glyphosate was examined in greenhouse and laboratory studies. At 21 days after treatment (DAT), a glyphosate-susceptible (SS) biotype was controlled > 90% with glyphosate at rates greater than 210 g ae ha−1. Comparatively, the GR biotype was only controlled 12% at 210 g ae ha−1. Using goosegrass control data, I50 values for GR and SS biotypes were 868 and 117 g ae ha−1, susceptibility, resulting in a resistance factor (RF) of 7.4. Treatment with glyphosate at 210 g ae ha−1 reduced fresh weight biomass of the SS biotype to 5 g per pot compared to 36 g for the GR biotype. A total of 3,360 g ae ha−1 glyphosate was required to reduce fresh weights of the GR biotype to ∼5 g per pot. Using fresh and dry weight biomass data, I50 values for the GR biotype were 3 to 10 times greater than the SS biotype. On each date from 1 to 6 DAT the SS biotype accumulated higher concentrations of shikimate than the GR biotype. Future research should evaluate strategies for managing GR goosegrass with alternative modes of action. To prevent the spread of resistance, additional research evaluating programs for managing glyphosate-susceptible goosegrass in GR crops is also warranted.

Type
Weed Management
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anonymous, . 2009. Monsanto Biotechnology Trait Acres: Fiscal Years 1996–2009. http://www.monsanto.com/investors/documents/2009/q4-biotechacres.pdf. Accessed: March 2, 2011.Google Scholar
Anonymous, . 2011. Roundup PowerMax herbicide label. St. Louis, MO Monsanto Company.Google Scholar
Baerson, S. R., Rodriquez, D. J., Tran, M., Feng, Y., Biest, N. A., and Dill, G. M. 2002. Glyphosate-resistant goosegrass: identification of a mutation in the target enzyme 5-enolpyruvylshikimate-3-phosphate synthase. Plant Physiol. 129:12651275.Google Scholar
Binkholder, K. M., Fresenburg, B. S., Teuton, T. C., Xiong, X., and Smeda, R. J. 2011. Selection of glyphosate resistant annual bluegrass (Poa annua L.) on a golf course. Weed Sci. 59:286289.Google Scholar
Brosnan, J. T., Nishimoto, R. K., and DeFrank, J. 2008. Metribuzin-resistant goosegrass (Eleusine indica) in bermudagrass turf. Weed Technol. 22:675678.Google Scholar
Brosnan, J. T., Thoms, A. W., McCullough, P. E., Armel, G. R., Breeden, G. K., Sorochan, J. C., and Mueller, T. C. 2010. Efficacy of flazasulfuron for control of annual bluegrass (Poa annua) and perennial ryegrass (Lolium perenne) as influenced by nitrogen. Weed Sci. 58:449456.Google Scholar
Buker, R. S., Steed, S. T., and Stall, W. M. 2002. Confirmation and control of a paraquat-tolerant goosegrass (Eleusine indica) biotype. Weed Technol. 16:309313.Google Scholar
Clewis, S. B., Wilcut, J. W., and Porterfield, D. 2006. Weed management with S-metolachlor and glyphosate mixtures in glyphosate-resistant strip- and conventional-tillage cotton (Gossypium hirsutum L.). Weed Technol. 20:232241.Google Scholar
Corbett, J. L., Askew, S. D., Thomas, W. E., and Wilcut, J. W. 2004. Weed efficacy evaluations of bromoxynil, glufosinate, glyphosate and pyrithiobac and sulfosate. Weed Technol. 18:443453.Google Scholar
Culpepper, A. A. and York, A. C. 1998. Weed management in glyphosate-tolerant cotton. J. Cotton Sci. 2:174185.Google Scholar
Culpepper, A. S., York, A. C., Batts, R. B., and Jennings, K. M. 2000. Weed management in glufosinate- and glyphosate-resistant soybean (Glycine max). Weed Technol. 14:7788.Google Scholar
Heap, I. 2011. International survey of herbicide resistant weeds. http://www.weedscience.org. Accessed: March 12, 2011.Google Scholar
Lee, L. J. and Ngim, J. 2000. A first report of glyphosate-resistant goosegrass (Eleusine indica (L) Gaertn) in Malaysia. Pest Manag. Sci. 56:336339.Google Scholar
Manalil, S., Busi, R., Renton, M., and Powles, S. B. 2011. Rapid evolution of herbicide resistance by low herbicide dosages. Weed Sci. 59:210217.Google Scholar
Molulsky, H. and Christopoulos, A. 2004. Fitting Models to Biological Data Using Linear and Nonlinear Regression. New York Oxford University Press. Pp. 4757.Google Scholar
Mudge, L. C., Gossett, B. J., and Murphy, T. R. 1984. Resistance of goosegrass (Eleusine indica) to dinitroaniline herbicides. Weed Sci. 32:591594.Google Scholar
Mueller, T. C., Ellis, A. T., Beeler, J. E., Sharma, S. D., and Singh, M. 2008. Shikimate accumulation in nine weedy species following glyphosate application. Weed Res. 48:455460.Google Scholar
Mueller, T. C., Massey, J., Hayes, R. M., Main, C. L., and Stewart, C. N. 2003. Shikimate accumulates in both glyphosate-sensitive and glyphosate-resistant horseweed (Conzya canadensis [L.] Cronq.). J. Agric. Food Chem. 51:680684.Google Scholar
Muenscher, W. C. 1955. Weeds. Ithaca, NY Mac Millian Publishing. 267 p.Google Scholar
Murphy, T. R., Gossett, B. J., and Toler, J. E. 1986. Growth and development of dinitroaniline-susceptible and –resistant goosegrass (Eleusine indica) biotypes under noncompetitive conditions. Weed Sci. 34:704710.Google Scholar
Ng, C. H., Ratnam, W., and Ismail, B. S. 2004a. Inheritance of glyphosate resistance in goosegrass (Eleusine indica). Weed Sci. 52:564570.Google Scholar
Ng, C. H., Wickneswari, R., Salmijah, S., Teng, Y. T., and Ismail, B. S. 2004b. Glyphosate resistance in Eleusine indica (L) Gaertn from different origins and polymerase chain reaction amplification of specific alleles. Aust. J. Agric. Res. 55:407414.Google Scholar
Nishimoto, R. K. and McCarty, L. B. 1997. Fluctuating temperature and light influence seed germination of goosegrass (Eleusine indica). Weed Sci. 45:426429.Google Scholar
Powles, S. B. 2008. Evolution in action: glyphosate resistant weeds threaten world crops. Outlook Pest. Manag. 19:256259.Google Scholar
Powles, S. B., Lorraine-Colwell, D. F., Dellow, J. J., and Preston, C. 1998. Evolved resistance to glyphosate in rigid ryegrass (Lolium rigidum) in Australia. Weed Sci. 46:604607.Google Scholar
Pratley, J., Urwin, N., Stanton, R., Baines, P., Broster, J., Cullis, K., Schafer, D., Bohn, J., and Krueger, R. 1999. Resistance to glyphosate in Lolium rigidum. I. Bioevaluation. Weed Sci. 47:405411.Google Scholar
Seefeldt, S. S., Jensen, J. E., and Fuerst, E. P. 1995. Log-logistic analysis of herbicide dose-response relationships. Weed Technol. 9:218227.Google Scholar
Steckel, L. E., Brown, B., Main, C., Hayes, R. M., Mueller, T. C., Rhodes, G. N., Sims, B. D., and McClure, A. M. 2011. Weed control manual for Tennessee field crops, forage crops, pastures, farm ponds and harvest aids. UT Extension, PB1580. Knoxville, TN University of Tennessee Institute of Aquaculture. 37 p.Google Scholar
Steckel, L. E., Main, C. L., Ellis, A. T., and Mueller, T. C. 2008. Palmer amaranth (Amaranthus palmeri) in Tennessee has low level glyphosate resistance. Weed Technol. 22:119123.Google Scholar
Thomas, W. E., Britton, T. T., Clewis, S. B., Askew, S. D., and Wilcut, J. W. 2006. Glyphosate-resistant cotton (Gossypium hirsutum) response and weed management with trifloxysulfuron, glyphosate, prometryn and MSMA. Weed Technol. 20:613.Google Scholar
[USDA] U.S. Department of Agriculture–Agricultural Marketing Service. 2010. Cotton Varieties Planted 2010 Crop. http://www.ams.usda.gov/mnreports/cnavar.pdf. Accessed: January 11, 2011.Google Scholar
Vaughn, K. C., Vaughn, M. A., and Gossett, B. J. 1990. A biotype of goosegrass (Eleusine indica) with an intermediate level of dinitroaniline herbicide resistance. Weed Technol. 4:157162.Google Scholar
Vila-Aiub, M. M., Balbi, M. C., Gundel, P. E., Ghersa, C. M., and Powles, S. B. 2007. Evolution of glyphosate-resistant johnsongrass (Sorghum halepense) in glyphosate-resistant soybean. Weed Sci. 55:566571.Google Scholar
Wilcut, J. W., Hayes, R. M., Nichols, R. L., et al. 2003. A beltwide regional economic assessment of weed management systems in non-transgenic and transgenic cotton. Page 2260 in Proceedings of the Beltwide Cotton Conference. Memphis, TN National Cotton Council of America.Google Scholar