Hostname: page-component-848d4c4894-nmvwc Total loading time: 0 Render date: 2024-06-20T05:20:06.025Z Has data issue: false hasContentIssue false

Flowering Patterns, Seed Production, and Somatic Polymorphism of Three Weed Species

Published online by Cambridge University Press:  12 June 2017

Scott A. Senseman
Affiliation:
Dep. Agron., Univ. Arkansas, Fayetteville. AR 72703
Lawrence R. Oliver
Affiliation:
Dep. Agron., Univ. Arkansas, Fayetteville. AR 72703

Abstract

Field studies determined flowering pattern, seed production, and somatic polymorphism of pitted morningglory, common cocklebur, and sicklepod under interspecific and no interference with soybean. Flowering patterns differed between years but were similar under both interferences. Interspecific interference reduced flower and seed numbers 85 to 99%. Rainfall had little effect on flowering, but photoperiod and temperature responses were evident for all weed species. The production equations for seed number per plant from dry weight were quadratic for pitted morningglory and common cocklebur but linear for sicklepod. All species showed somatic polymorphism; however, differences in seed germination and viability were not consistent between years.

Type
Weed Biology and Ecology
Copyright
Copyright © 1993 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Barrentine, W. L. and Oliver, L. R. 1977. Competition threshold levels and control of cocklebur in soybeans. Pages 13 in Mississippi Agric. Exp. Stn. and Arkansas Agric. Exp. Stn. Bull. No. 83.Google Scholar
2. Bloomberg, J. R., Kirkpatrick, B. L., and Wax, L. M. 1982. Competition of common cocklebur (Xanthium strumarium) with soybean (Glycine max). Weed Sci. 30:507513.Google Scholar
3. Bozsa, R. C., Oliver, L. R., and Driver, T. L. 1989. Intraspecific and interspecific sicklepod (Cassia obtusifolia) interference. Weed Sci. 37:670673.CrossRefGoogle Scholar
4. Bridges, D. C. and Walker, R. H. 1985. Influence of weed management and cropping systems on sicklepod (Cassia obtusifolia) seed in the soil. Weed Sci. 33:800804.CrossRefGoogle Scholar
5. Crowley, R. H. and Buchanan, G. A. 1982. Variations in seed production and the response to pests of morningglory (Ipomoea) species and smallflower morningglory (Jacquemontia tamnifolia). Weed Sci. 30:187190.Google Scholar
6. Davis, R. G., Johnson, W. C., and Wood, F. O. 1967. Weed root profiles. Agron. J. 59:555556.CrossRefGoogle Scholar
7. Dubey, S. K. and Pandey, H. N. 1988. Ray achene polymorphism and germination in ragweed parthenium (Parthenium hysterophorus). Weed Sci. 36:566567.Google Scholar
8. Duffie, J. A. and Beckman, W. A. 1980. Solar Radiation. Pages 2125 in Solar Engineering of Thermal Processes. John Wiley and Sons, New York.Google Scholar
9. Egley, G. H. and Chandler, J. M. 1983. Longevity of weed seeds after 5.5 years in the Stoneville 50-year buried-seed study. Weed Sci. 31:264270.Google Scholar
10. Forsyth, C. and Brown, N.A.C. 1982. Germination of the dimorphic fruits of Bidens frondosa L. New Phytol. 90:151164.Google Scholar
11. Gardner, F. P., Pearce, R. B., and Mitchell, R. L. 1985. Flowering and Fruiting. Pages 296320 in Gardner, F. P., ed. Physiology of Crop Plants. The Iowa State Univ. Press, Ames, IA.Google Scholar
12. Gilmore, E. C. Jr. and Rogers, J. S. 1958. Heat units as a method of measuring maturity in corn. Agron. J. 50:611615.Google Scholar
13. Gomes, L. F., Chandler, J. M., and Vaughan, C. E. 1978. Aspects of germination of three Ipomoea taxa. Weed Sci. 26:245248.Google Scholar
14. Goyne, P. J. and Schneiter, A. A. 1988. Temperature and photoperiod interactions with the phenological development of sunflower. Agron. J. 80:777784.Google Scholar
15. Howe, O. W. and Oliver, L. R. 1987. Influence of soybean (Glycine max) row spacing on pitted morningglory interference (Ipomoea lacunosa). Weed Sci. 35:185193.Google Scholar
16. Huff, A. and Dybing, C. D. 1980. Factors affecting shedding of flowers in soybean (Glycine max (L.) Merrill.). J. Exp. Bot. 31:751762.Google Scholar
17. McWilliams, E. L., Landers, R. Q., and Mahlstede, J. P. 1968. Variation in seed weight and germination in populations of Amaranthus retroflexus L. Ecology 49:291295.Google Scholar
18. Monks, D. W. and Oliver, L. R. 1988. Interactions between soybean (Glycine max) cultivars and selected weeds. Weed Sci. 36:770774.Google Scholar
19. Mosier, D. G. 1986. Common cocklebur (Xanthium strumarium) and entireleaf morningglory (Ipomoea hederacea var. integriuscula) interference on soybeans (Glycine max). Page 76 in Ph.D. Dissertation. Univ. Arkansas, Fayetteville.Google Scholar
20. Mueller, T. C. and Witt, W. W. 1987. The effect of planting date on flowering of cotton, jimsonweed and velvetleaf. Proc. South. Weed Sci. Soc. 40:301.Google Scholar
21. Roberts, E. H. and Summerfield, R. J. 1987. Measurement and prediction of flowering in annual crops. Pages 1750 in Atherton, J. G., ed. Manipulation of Flowering. Butterworths, London.Google Scholar
22. Sims, B. D. and Oliver, L. R. 1990. Mutual influences of seedling johnsongrass (Sorghum halepense), sicklepod (Cassia obtusifolia) and soybean (Glycine max). Weed Sci. 38:139147.Google Scholar
23. Teem, D. H., Hoveland, C. S., and Buchanan, G. A. 1980. Sicklepod (Cassia obtusifolia) and coffee senna (Cassia occidentalis): Geographic distribution, germination, and emergence. Weed Sci. 28:6870.Google Scholar
24. Tetrazolium Testing Committee of the Association of Official Seed Analysis. 1970. Grabe, E. F., ed. Tetrazolium Test Handb. Agric. Seed. Contribution No. 29. 62 pp.Google Scholar
25. Thurlow, D. L. and Buchanan, G. A. 1972. Competition of sicklepod with soybeans. Weed Sci. 20:379384.Google Scholar
26. Venable, D. L. and Levin, D. A. 1985. Ecology of achene dimorphism in Heterotheca latifolia . J. Ecol. 73:133145.Google Scholar
27. Williams, J. T. and Harper, J. L. 1965. Seed polymorphism and germination. I. The influence of nitrates and low temperatures on the germination of Chenopodium album . Weed Res. 5:141150.CrossRefGoogle Scholar