Skip to main content Accessibility help
×
Home

Fate of 3,4-Dichloroaniline in a Rice (Oryza sativa)-Paddy Microecosystem

  • Allan R. Isensee (a1), Donald D. Kaufman (a1) and Gerald E. Jones (a1)

Abstract

The fate of 3,4-dichloroaniline (DCA), a major metabolite of the herbicide propanil (3′,4′-dichloropropionanilide), in rice (Oryza sativa L.), soil, water, and aquatic organisms was determined in rice-paddy microecosystems. Soil, treated with 10 ppm DCA, was placed in glass chambers, planted to rice, then flooded when the rice reached the two-leaf stage. After flooding, four species of aquatic organisms were added. The concentration of DCA and metabolites in soil, rice, water, and aquatic organisms was determined over a period of time. A maximum of 2.8% of the total radioactivity applied to soil desorbed or leached into water. DCA recovered from water decreased from 12 to 1% of the total radioactivity in water between 1 and 30 days after flooding. Between 10.5 and 18.5% of the radioactivity remaining in soil at the end of the experiments was extractable. Of the radioactivity recovered, between 5 and 11% was DCA, and up to 6 to 19% was 3,3′,4,4′-tetrachloroazobenzene (TCAB), these percentages being dependent on exposure time. Rice accumulated 0.5% or less of the total radioactivity in soil. Only 35 to 55% of the accumulated radioactivity was extractable. Very small amounts of radioactivity were accumulated by aquatic organisms.

Copyright

References

Hide All
1. Bartha, R. 1968. Biochemical transformations of anilide herbicides in soil. J. Agric. Food Chem. 16:602604.
2. Chisaka, H. and Kearney, P. C. 1970. Metabolism of propanil in soils. J. Agric. Food Chem. 18:854858.
3. Frear, D. S., and Still, G. G. 1968. The metabolism of 3,4-dichloropropionanilide in plants. Partial purification and properties of an aryl acylamidase from rice. Phytochemistry 7:913920.
4. Isensee, A. R., Jones, G. E., McCann, J. A., and Pitcher, F. G. 1979. Toxicity and fate of nine toxaphene fractions in an aquatic model ecosystem. J. Agric. Food Chem. 27:10411046.
5. Kaufman, D. D., Blake, J., and Miller, D. E. 1971. Methylcarbamates affect acylanilide herbicide residues in soil. J. Agric. Food Chem. 19:204206.
6. Kearney, P. C. and Plimmer, J. R. 1972. Metabolism of 3,4-dichloroaniline in soils. J. Agric. Food Chem. 20:584585.
7. Kearney, P. C., Plimmer, J. R., and Guardia, F. B. 1969. Effect of soil type and propanil concentration on 3,3′,4,4′-tetrachloroazobenzene formation. Abstr., Am. Chem. Soc. No. 31.
8. Kearney, P. C., Smith, R. J. Jr., Plimmer, J. R., and Guardia, F. B. 1970. Propanil and TCAB residues in rice soils. Weed Sci. 18:464466.
9. Sokolov, M. S. 1978. General laws of the migration of pesticide residues in the delta landscape under irrigation. Pages 3846 in Symp. on Environmental Transport and Transformation of Pesticides. EPA-600/9-78-003:3846.
10. Still, G. G. 1969. 3,3′,4,4′-tetrachloroazobenzene: Its translocation and metabolism in rice plants. Weed Res. 9:224241.
11. Viswanathan, R., Scheunert, I., Kohli, J., Klein, W., and Korte, F. 1978. Long-term studies on the fate of 3,4-dichloroaniline-14C in a plant-soil-system under outdoor conditions. J. Environ. Sci. Health B13:243259.
12. Yih, R. Y., McRae, D. H., and Wilson, H. F. 1968. Metabolism of 3′,4′-dichloropropionanilide: 3,4-dichloroaniline-lignin complex in rice plants. Science 161:376377.

Keywords

Fate of 3,4-Dichloroaniline in a Rice (Oryza sativa)-Paddy Microecosystem

  • Allan R. Isensee (a1), Donald D. Kaufman (a1) and Gerald E. Jones (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed