Skip to main content Accessibility help

Evaluating anthranilate synthase as a herbicide target

  • Daniel L. Siehl (a1), Mani V. Subramanian (a2), Eric W. Walters (a2), Jonathan H. Blanding (a2), Thierry Niderman (a3) and Christian Weinmann (a3)...


Attempts to discover new active ingredients and target sites within the aromatic pathway have resulted in the synthesis of potent enzyme inhibitors, but no herbicides. As an aid in identifying a new target for inhibitor design and screening, we have determined the mode of action of a compound (6-methyl anthranilate) that exhibits noncommercial levels of herbicidal activity. Our evidence suggests that 6-methyl anthranilate is converted in vivo, by traversing the tryptophan biosynthetic sequence, to 4-methyl tryptophan, which inhibits anthranilate synthase. Inhibitors synthesized by design and those found by target-based screening converged on analogs of tryptophan and anthranilate. None, however, was more herbicidal than 6-methyl anthranilate.


Corresponding author


Hide All
Alberg, D. G., Lauhon, C. T., Nyfeler, R., Fässler, A., and Bartlett, P. A. 1992. Inhibition of EPSP synthase by analogues of the tetrahedral intermediate and of EPSP. J. Am. Chem. Soc. 114: 35353546.
Baille, A. C., Corbett, J. R., Dowsett, J. R., and McCloskey, P. 1972. Inhibitors of shikimate dehydrogenase as potential herbicides. Pestic. Sci. 3: 113120.
Bartlett, P. A., Nakagawa, Y., Johnson, C. R., Reich, S. H., and Luis, A. 1988. Chorismate mutase inhibitors: synthesis and evaluation of some potential transition-state analogues. J. Org. Chem. 53: 31953210.
Bugg, T.D.H., Abell, C., and Coggins, J. R. 1988a. Specificity of E. coli shikimate dehydrogenase towards analogues of 3-dehydroshikimic acid. Tetrahedron Lett. 29: 67796782.
Bugg, T.D.H., Abell, C., and Coggins, J. R. 1988b. Affinity labelling of E. coli dehydroquinase. Tetrahedron Lett. 29: 67836786.
Caligiuri, M. G. and Bauerle, R. 1991. Identification of amino acid residues involved in feedback regulation of the anthranilate synthase complex from Salmonella typhymurium . J. Biol. Chem. 266: 83288335.
Clarke, T., Stewart, J. D., and Ganem, B. 1990. Transition-state analogue inhibitors of chorismate mutase. Tetrahedron 46: 731748.
Last, R. and Fink, G. 1988. Tryptophan-requiring mutants of the plant Arabidopsis thaliana , Science 240: 305310.
Montchamp, J-L., Pieler, L. T., and Frost, J. W. 1992. Diastereoselection and in vivo inhibition of 3-dehydroquinate synthase. J. Am. Chem. Soc. 114: 44534459.
Morollo, A. A., Finn, M. G., and Bauerle, R. 1993. Isolation and structure determination of 2-amino-2-deoxyisochorismate: an intermediate in the biosynthesis of anthranilate. J. Am. Chem. Soc. 115: 816817.
Normanly, J., Cohen, J. D., and Fink, G. R. 1993. Arabidopsis thaliana auxotrophs reveal a tryptophan-independent biosynthetic pathway for indole-3-acetic acid. Proc. Natl. Acad. Sci. 90: 1035510359.
Pompliano, D. L., Reimer, L. M., Myrvold, S., and Frost, J. W. 1989. Probing metabolic perturbations in plants with chemical inhibition of dehydroquinate synthase. J. Am. Chem. Soc. 111: 18661871.
Poulsen, C., Bongaerts, R.J.M., and Verpoorte, R. 1993. Purification and characterization of anthranilate synthase from Catharanthus roseus . Eur. J. Biochem. 212: 431440.
Prisbylla, M. P., Onisko, B. C., Shribbs, J. M., Adams, D. O., Liu, Y., Ellis, M. K., Hawkes, T. R., and Mutter, L. C. 1993. The novel mechanism of action of the herbicidal triketones. in Proc. Brighton Crop Prot. Conf.—Weeds. London: British Crop Protection Council, pp. 731738.
Schulz, A., Ort, O., Beyer, P., and Kleinig, H. 1993. SC-0051, a 2-benzolcyclohexane-1,3-dione bleaching herbicide, is a potent inhibitor of the enzyme p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 318: 162166.
Siehl, D. L. 1992. Considerations in selecting a target site for herbicide design. in Singh, B. K., Flores, H. E., and Shannon, J. C., eds. Biosynthesis and Molecular Regulation of Amino Acids in Plants. Rockville, MD: American Society of Plant Physiologists, pp. 146162.
Siehl, D. L. 1997. Inhibitors of EPSP synthase, glutamine synthetase and histidine synthesis. in Roe, R. M. and Burton, J., eds. Herbicide Activity: Toxicology, Biochemistry and Molecular Biology. Amsterdam: I.O.S. Press, pp. 67125.
Subramanian, M. V., Brunn, S. A., Bernasconi, P., Patel, B. C., and Reagan, J. D. 1997. Revisiting auxin transport inhibition as a mode of action for herbicides. Weed Sci. 45: 621627.
Thomas, G. M. 1984. Herbicidal activity of 6-methylanthranilate and analogues. J. Agric. Food Chem. 32: 747749.
Veerasekaran, P., Kirkwood, R. C., and Parnell, E. W. 1981. Studies of the mechanism of action of asulam in plants: effect of asulam on the biosynthesis of folic acid. Pestic. Sci. 12: 330338.
Wittenbach, V.A., Aulabaugh, A., and Schloss, J. V. 1991. Examples of extraneous site inhibitors and reaction intermediate analogues: acetolactate synthase and ketol-acid reductoisomerase. in Frehse, H., ed. Pesticide Chemistry: Advances in International Research, Development and Legislation. Weinheim, Germany: VCH, pp. 151160.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed