Skip to main content Accessibility help

Effects of Sublethal Concentrations of Bentazon, Fluazifop, Haloxyfop, and Sethoxydim on Corn (Zea mays)

  • Jon P. Chernicky (a1) and Fred W. Slife (a1)


Field studies were conducted to measure the response of corn (Zea mays L. var. ‘Pioneer 3377’) to foliar applications of sethoxydim {2-[1-(ethoxyimino)butyl]-5-[2-(ethylthio)propyl]-3-hydroxy-2-cyclohexen-1-one}, fluazifop {(±)-2-[4-[[5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy] propanoic acid}, and haloxyfop {2-[4-[[3-chloro-5-(trifluoromethyl)-2-pyridinyl]oxy]phenoxy] propanoic acid} as influenced by corn growth stage and the addition of 7.7, 15,4, 77.7, 140, 280, and 840 g/ai/ha of bentazon [3-(1-methylethyl)-(1H)-2,1,3-benzothiadiazin-4(3H)-one 2,2-dioxide]. Applications of sethoxydim (16.8, 33.6, 67.2, 100, and 134 g ai/ha), fluazifop, or haloxyfop (1.0, 2.0, 4.0, 8.0, 10.0, and 13.4 g ai/ha) to four- to five-leaf corn did not reduce seed weight, but significant reductions resulted when sethoxydim (100 g/ha) or fluazifop (13.4 g/ha) was applied to 70- to 80-cm (six-leaf) corn with or without bentazon. Corn grain yield was significantly reduced by sethoxydim (>67.2 g/ha) treatment at either growth stage of corn. In contrast, corn injury induced by fluazifop (>8.0 g/ha) and haloxyfop (13.4 g/ha) resulted in reductions in yield only when applications were made to 70- to 80-cm corn. Significant reductions in seed germination also resulted from foliar applications of the graminicides, but these reductions were inconsistent across corn growth stage.



Hide All
1. Andersen, R. N. 1976. Response of monocotyledons to HOE-22870 and HOE-23408. Weed Sci. 24:266269.
2. Asare-Boamah, N. K., Genez, A. L., and Monaco, T. J. 1983. Physiological and cytological effects of BAS 9052 OH on corn (Zea mays) seedlings. Weed Sci. 30:4954.
3. Behrens, R. and Lueschen, W. E. 1979. Dicamba volatility. Weed Sci. 27:486492.
4. Chernicky, J. P., Gossett, B. J., and Murphy, T. R. 1984. Factors influencing control of annual grasses with sethoxydim or RO-13-8895. Weed Sci. 32:174177.
5. Gealy, D. R. and Slife, F. W. 1983. BAS 9052 OH effects on leaf photosynthesis and growth. Weed Sci. 31:457461.
6. Greenshields, J.E.R. and Putt, E. D. 1958. The effect of 2,4-D spray drift on sunflowers. Can. J. Plant Sci. 38:234240.
7. Greenshields, J.E.R. and White, W. J. 1954. The effect of 2,4-D spray drift on sweet clover plants in the record year of growth. Can. J. Agric. Sci. 34:389392.
8. Hanway, J. J. and Ritchie, S. W. 1982. How a corn plant develops. Special report No. 48. Iowa State Univ. Cooperative Ext. Serv., Ames, Iowa. 20 pp.
9. Hartzler, R. G. and Foy, C. L. 1983. Efficacy of three postemergence grass herbicides for soybeans. Weed Sci. 31:557561.
10. Hartzler, R. G. and Foy, C. L. 1983. Compatibility of BAS 9052 OH with acifluorfen and bentazon. Weed Sci. 31:557599.
11. Hosaka, H., Inaba, H., and Ishikawa, H. 1984. Response of monocotyledons to BAS 9052 OH. Weed Sci. 32:2832.
12. Potts, S. F. 1963. Treating woody plants with herbicides in proximity to sensitive crops. Proc. South. Weed Conf. 16:269270.
13. Wax, L. M., Knuth, L. A., and Slife, F. W. 1969. Response of soybeans to 2,4-D, dicamba, and picloram. Weed Sci. 17:388393.
14. West, L. D., Dawson, J. H., and Appleby, A. P. 1980. Factors influencing barnyardgrass (Echinochloa crus-galli) control with diclofop. Weed Sci. 28:366371.


Effects of Sublethal Concentrations of Bentazon, Fluazifop, Haloxyfop, and Sethoxydim on Corn (Zea mays)

  • Jon P. Chernicky (a1) and Fred W. Slife (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.