Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T13:15:57.099Z Has data issue: false hasContentIssue false

Effect of soil incorporation and dose on control of field bindweed (Convolvulus arvensis) with the preemergence bioherbicide Phomopsis convolvulus

Published online by Cambridge University Press:  12 June 2017

S. Vogelgsang
Affiliation:
Department of Plant Science, McGill University, Québec, Canada H9X 3V9
A. DiTommaso
Affiliation:
Department of Plant Science, McGill University, Québec, Canada H9X 3V9

Abstract

The preemergence efficacy of soil surface applications of a Phomopsis convolvulus granular formulation to control field bindweed seedlings was compared with its efficacy when inoculum granules were incorporated in soil. In addition, the effect of different doses of soil-applied granules was also determined. Under controlled environment conditions, incorporation of the fungal granules resulted in aboveground biomass reductions between 88 and 96%, with no significant differences observed between incorporation depths of 1.5 and 3 cm. Granule applications on the soil surface were less effective, reducing aboveground biomass 40 to 83%. In a parallel field experiment conducted over two growing seasons, however, surface applications of inoculum granules resulted in greater weed control compared with soil incorporation of the granules. In spring and summer trials conducted in 1996, surface applications resulted in a 93 and 100% aboveground biomass reduction, respectively, whereas incorporated granules reduced biomass 62 and 97%. Similar trends were observed in 1997. Different soil-applied doses of P. convolvulus did not affect the level of weed control under both controlled environment and field conditions. In 1995 and 1996 field trials, all rates used (30, 20, and 10 g 0.25m−2plot) resulted in substantial (90 to 100%) field bindweed aboveground biomass reductions. Findings in this study indicate that under field conditions, preemergence applications of the bioherbicide P. convolvulus on the soil surface provide effective control of field bindweed.

Type
Weed Management
Copyright
Copyright © 1998 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Institut de Biologie Végétale, Université de Fribourg, Switzerland 1700

References

Literature Cited

Daniel, W. W., ed. 1978. Applied Nonparametric Statistics. Boston: Houghton Mifflin. 503 p.Google Scholar
DeGennaro, F. P. and Weller, S. C. 1984. Differential susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Sci. 32: 472476.Google Scholar
Derscheid, L. A., Stritzke, J. F., and Wright, W. G. 1970. Field bindweed control with cultivation, cropping and chemicals. Weed Sci. 18: 590596.Google Scholar
Dufner, J., Jensen, U., and Schumacher, E., eds. 1992. Statistik mit SAS. Stuttgart: Teubner. 398 p.Google Scholar
Fitt, B.D.L., McCartney, H. J., and Walklate, P. J. 1989. The role of rain in dispersal of pathogen inoculum. Annu. Rev. Phytopathol. 27: 241270.Google Scholar
Holm, L. G., Plunknett, D. L., Pancho, J. V., and Herberger, J. P. 1977. The World's Worst Weeds. Honolulu: University Press of Hawaii. 609 p.Google Scholar
Jackson, M. A., Shasha, B. S., and Schisler, D. A. 1996. Formulation of Colletotrichum truncatum microsclerotia for improved biocontrol of the weed hemp Sesbania (Sesbania exaltata) . Biol. Control 7: 107113.Google Scholar
Jones, R. W., Lanini, W. T., and Hanock, J. G. 1988. Plant growth response to the phytotoxin viridol produced by the fungus Gliocladium virens . Weed Sci. 36: 683687.Google Scholar
Kempenaar, C., Wanningen, R., and Scheepens, P. C. 1996. Control of Chenopodium album by soil application of Ascochyta caulina under greenhouse conditions. Ann. Appl. Biol. 129: 343354 Google Scholar
Kosinski, W. and Weller, S. C. 1989. 5-Enolpyruvyl-shikimate-3-phosphate synthase activity in field bindweed, Convolvulus arvensis L., biotypes. Weed Sci. Soc. Am. Abstr. 29: 7677.Google Scholar
Madden, L. V. 1992. Rainfall and the dispersal of fungal spores. Adv. Plant Pathol. 8: 3979.Google Scholar
Morin, L., Watson, A. K., and Reeleder, R. D. 1989a. Effect of dew, inoculum density, and spray additives on infection of field bindweed by Phomopsis convolvulus . Can. J. Plant Pathol. 12: 4852.Google Scholar
Morin, L., Watson, A. K., and Reeleder, R. D. 1989b. Efficacy of Phomopsis convolvulus for control of field bindweed (Convolvulus arvensis) . Weed Sci. 37: 830835.Google Scholar
Morin, L., Watson, A. K., and Reeleder, R. D. 1990. Production of conidia by Phomopsis convolvulus . Can. J. Microbiol. 36: 8691.Google Scholar
Ormeno-Nuñez, J., Reeleder, R. D., and Watson, A. K. 1988a. A new species of Phomopsis recovered from field bindweed (Convolvulus arvensis) . Can. J. Bot. 66: 22282233.Google Scholar
Ormeno-Nuñez, J., Reeleder, R. D., and Watson, A. K. 1988b. A foliar disease of field bindweed (Convolvulus arvensis L.) caused by Phomopsis convolvulus . Plant Dis. 72: 338342.Google Scholar
Phillips, R. E., Blevins, R. L., Thomas, G. W., Frye, W. W., and Phillips, S. H. 1980. No-tillage agriculture. Science 208: 11081113.Google Scholar
Sparace, S. A., Wymore, L. A., Menassa, R., and Watson, A. K. 1991. Effects of the Phomopsis convolvulus conidial matrix on conidia germination and the leaf anthracnose disease of field bindweed (Convolvulus arvensis) . Plant Dis. 75: 11751179.CrossRefGoogle Scholar
Steel, R.G.D. and Torrie, H. T., eds. 1980. Principles and Procedures of Statistics. New York: McGraw-Hill. 633 p.Google Scholar
Tsantrizos, Y. S., Ogilvie, K. K., and Watson, A. K. 1992. Phytotoxic metabolites of Phomopsis convolvulus, a host-specific pathogen of field bindweed. Can. J. Chem. 70: 22762284.Google Scholar
Vogelgsang, S., Watson, A. K., DiTommaso, A., and Hurle, K. 1998a. Effect of the pre-emergence bioherbicide Phomopsis convolvulus on seedling and established plant growth of Convolvulus arvensis . Weed Res. 38: 175182.Google Scholar
Vogelgsang, S., Watson, A. K., and DiTommaso, A. 1998b. Effect of moisture, inoculum production, and planting substrate on disease reaction of field bindweed (Convolvulus arvensis L.) to the fungal pathogen, Phomopsis convolvulus . Eur. J. Plant Pathol. 104: 253262.Google Scholar
Vogelgsang, S., Watson, A. K., and Hurle, K. 1994. The efficacy of Phomopsis convolvulus against field bindweed (Convolvulus arvensis) applied as a preemergence bioherbicide. J. Plant Dis. Prot. (Spec. Iss.) XIV: 253260.Google Scholar
Walker, H. L. 1981. Granular formulation of Alternaria macrospora for control of spurred anoda (Anoda cristata) . Weed Sci. 29: 342345.Google Scholar
Waksman, S. A., ed. 1952. Soil Microbiology. New York: J. Wiley. 356 p.Google Scholar
Watson, A. K. and Wymore, L. A. 1990. Identifying limiting factors in the biocontrol of weeds. in Baker, R. and Dunn, P., eds. New Directions in Biological Control: Alternarives for Suppressing Agricultural Pests and Diseases. UCLA Symp. Mol. Cell. Biol., New Ser. 112: 305316.Google Scholar
Weaver, S. E. and Riley, W. R. 1982. The biology of Canadian weeds. 53. Convolvulus arvensis L. Can. J. Plant Sci. 62: 461472.Google Scholar
Weidemann, G. J. and Templeton, G. E. 1988. Efficacy and soil persistence of Fusarium solani f. sp. cucurbitae for control of texas gourd (Cucurbita texana). Plant Dis. 72: 3638.Google Scholar
Whitworth, J. W. and Muzik, T. J. 1967. Differential response of selected clones of bindweed to 2,4 D. Weeds 15: 275280.Google Scholar
Yerkes, C. N. and Weller, S. C. 1996. Diluent volume influences susceptibility of field bindweed (Convolvulus arvensis) biotypes to glyphosate. Weed Technol. 10: 565569.Google Scholar