Skip to main content Accessibility help
×
Home

Effect of proximity factors on competition between winter wheat (Triticum aestivum) and Italian ryegrass (Lolium multiflorum)

  • Abul Hashem (a1), S. R. Radosevich and M. L. Roush (a2)

Abstract

Density and spatial arrangement (rectangularity) effects on the competitive relationships, yield performance, and dynamics in canopy dominance of winter wheat and Italian ryegrass were evaluated using two addition series experiments. In experiment 1, combinations of six densities of each species formed the treatment matrix of addition series. In experiment 2, each species was tested at four densities and three rectangularities (RE) of winter wheat. In monocultures, crop density (plants per square meter) explained 82 to 85% of the total variation in the per-plant biomass of winter wheat in experiment 1. In mixtures of crop and weed, initial wheat density (N1) and initial ryegrass density (N2) and interaction of N1 and N2 explained 74 to 80% of the total variation in the per-plant biomass of winter wheat and 68 to 79% of Italian ryegrass in experiment 1. Intraspecific competition was apparent between 15 and 90 days after emergence (DAE) in winter wheat and between 90 and 170 DAE in Italian ryegrass. In mixtures, RE influenced plant size of Italian ryegrass up to 50 DAE only. Maximum winter wheat intraspecific competition occurred at 170 DAE, but maximum interspecific competition occurred during reproductive stages in mixtures. High RE increased seed yield, seed size, and harvest index of winter wheat and reduced biomass of Italian ryegrass. Grain yield of winter wheat was reduced up to 92% by competition from ryegrass. Even nine ryegrass plants in 100 winter wheat plants m−2 reduced winter wheat grain yield by 33%. However, the extent of loss in winter wheat grain yield was less in RE 16 (wider spacing) than in RE 1 (square planting) or 4 (close row spacing). Winter wheat was the stronger competitor during vegetative stages, but Italian ryegrass became the stronger competitor during the reproductive stages of development. Winter wheat leaves dominated at the top canopy during the vegetative stage, but ryegrass dominated at the top canopy during the reproductive stages. In the top canopy of mixtures at 200 DAE, the leaf area indices (LAI) of ryegrass was 6.6 times greater than winter wheat at RE 1 compared to only 1.6 times at RE 16. Greater LAI of Italian ryegrass in the top canopy reduced photosynthetically active radiation available to winter wheat by 68% at booting stage.

Copyright

Corresponding author

Corresponding author. Department of Forest Science, Oregon State University, Corvallis, OR 97331

References

Hide All
Angonin, C., Caussanel, J. P., and Meynard, J. M. 1996. Competition between winter wheat and Veronica hederiifolia: influence of weed density and the amount and timing of nitrogen application. Weed Res. 36: 175187.
Appleby, A. P., Olson, P. O., and Colbert, D. R. 1976. Winter wheat yield reduction from interference by Italian ryegrass. Agron. J. 68: 463466.
Auld, B. A., Kemp, D. R., and Medd, R. W. 1983. The influence of spatial arrangement on the grain yield of wheat. Aust. J. Agric. Res. 34: 99108.
Austin, M. P. 1982. Use of a relative physiological performance value in the prediction of performance in multispecies mixtures from monocultures performance. J. Appl. Ecol. 70: 559570.
Barbour, M. G., Burk, J. H., and Pitts, W. D. 1987. Pages 198204 in Terrestrial Plant Ecology. Menlo Park, CA: Benjamin/Cummings.
Burrill, L. C., Braunworth, W. S. Jr., William, R. D., Parker, R. R., Swan, D. G., and Kidder, D. W. 1988. Pages 2948 in Pacific Northwest Handbook. Corvallis, OR: Oregon State University.
Concannon, J. A. 1987. The Effects of Density and Proportion of Spring Wheat and Lolium multiflorum Lam. . Oregon State University, Corvallis, OR. 101 p.
Cripps, J.E.L., Melville, F., and Nicol, H. I. 1975. The relationships of granny apple tree growth and early cropping to planting density and rectangularity. J. Hortic. Sci. 50: 291299.
Cunia, T. 1973. Dummy variables and some of their uses in regression analysis. Pages 1146 in Cunia, T. et al., eds. Proceeding of IUFRO Meeting. France. June 2529, 1973.
Doli, H., Holm, O., and Sogaard, B. 1994. Effect of crop density on competition by wheat and barley with Agrostemma githago and other weeds. Weed Res. 35: 391396.
Fischer, R. A. and Miles, R. E. 1973. The role of spatial pattern in the competition between crop plants and weeds. A theoretical analysis. Math. Biosci. 18: 335350.
Gaudit, G. L. and Keddy, P. A. 1988. A comparative approach to predicting competitive ability from plant traits. Nature 334: 242243.
Ghersa, C. M. and Martinez Ghersa, M. A. 1991. A field method for predicting yield losses in maize caused by johnsongrass (Sorghum halepense). Weed Technol. 5: 279285.
Goodall, W. D. 1957. Some consideration in the use of point quadrat methods for the analysis of vegetation. Aust. J. Biol. Sci. 5: 141.
Grace, J. B. 1990. On the relationships between plant traits and competitive ability. Pages 5165 in Grace, J. B. and Tilman, D. T., eds. Perspective on Plant Competition. New York: Academic Press.
Hashem, A., Radosevich, S. R., and Roush, M. L. 1994. Morphology and growth of winter wheat as affected by competition from Italian ryegrass (Lolium multiflorum Lam). Ann. Bangladesh Agric. 4: 5360.
Holliday, R. 1963. The effect of row width on the yield of cereals. Field Crop Abstr. 16: 7181.
Hume, L. 1985. Crop loss in wheat (Triticum aestivum) as determined using weeded and non-weeded quadrats. Weed Sci. 33: 734740.
Huxley, P. A. 1963. Considerations when experimenting with changes in plant spacing. Working paper # 15. ICRAF, P.O. Box 30677, Nairobi.
Kropff, M. J. 1988. Modeling the effects of weeds on crop production. Weed Res. 28: 465471.
Kropff, M. J. and Spitters, C.J.T. 1991. A simple model of crop loss by weed competition from early observations on relative leaf area of the weeds. Weed Res. 31: 97105.
Loomis, R. S. and Williams, W. A. 1969. Productivity and morphology of crop stands: pattern with leaves. in Eastin, J. D. et al., eds. Physiological Aspects of Crop Yield. Madison, WI: ASA and CSA.
Martin, R. J., Cullis, J. B., and McNamara, D. W. 1987. Prediction of wheat yield loss due to competition by wild oats (Avenu spp.). Aust. J. Agric. Res. 38: 487499.
Medd, R. W., Auld, B. A., Kemp, D. R., and Musisom, R. D. 1985. The influence of wheat density and spatial arrangements on annual ryegrass, Lolium rigidum, competition. Aust. J. Agric. Res. 36: 361371.
Monsi, M. and Saeki, T. 1953. Uber den Lichtfaktor in den Pflanzengesllshaften und seine beduetung fur die Stoffproduktion. Jap. J. Bot. 14: 2252.
Radford, B. J., Wilson, B. J., Cartiledge, O., and Watkins, F. B. 1980. Effect of wheat seeding rate on wild oat competition. Aust. J. Exp. Agric. Anim. Husb. 20: 7781.
Radosevich, S. R. 1987. Methods to study interaction among crops and weed. Weed Technol. 1: 190198.
Radosevich, S. R. 1988. Methods to study crop and weed interaction. Pages 121143 in Alteiri, M. A. and Liebman, M., eds. Weed Management in Agroecosystems: Ecological Approaches. Boca Raton, FL: CRC Press.
Roush, M. L. 1988. Models of a Four-Species Annual Weed Community Dynamics. . Oregon State University, Corvallis, OR. 217 p.
[SAS] Statistical Analysis Systems. 1987. SAS/STAT Guide for Personal Computers. Version 6. Cary, NC: Statistical Analysis Systems Institute.
Shainsky, L. J. 1988. Competitive Interactions Between Douglas-fir and Red Alder Seedling: Growth Analysis, Resource Use, and Physiology. . Oregon State University, Corvallis, OR. 221 p.
Spitters, C.J.T. 1983. An alternative approach to the analysis of mixed cropping experiment. I. Estimation of competition effects. Neth. J. Agric. Sci. 31: 111.
Stern, W. R. and Donald, C. M. 1962. The influence of leaf area and radiation on the growth of clover swards. Aust. J. Agric. Sci. 13: 615623.
Vitta, J. I. and Quintanilla, C. F. 1996. Canopy measurements as predictors of weed-crop competition. Weed Sci. 44: 511516.
Watkinson, A. R. 1981. Interference in pure and mixed population of Agrostemma githago . J. Appl. Ecol. 18: 967976.
Wilson, B. J. and Wright, K. J. 1990. Predicting the growth and competitive effects of annual weeds in wheat. Weed Res. 30: 201212.
Wilson, B. J., Wright, K. J., Brain, P., Clements, M., and Stephens, E. 1995. Predicting the competitive effects of weed and crop density on weed biomass, weed seed production and crop yield in wheat. Weed Res. 35: 265278.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed