Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T12:23:40.509Z Has data issue: false hasContentIssue false

Effect of Long-term Vetch (Vicia villosa) Cover Crop and Tillage System on Fluometuron Dissipation from Surface Soil

Published online by Cambridge University Press:  12 June 2017

Blake A. Brown
Affiliation:
Univ. Tennessee. Knoxville, TN
Robert M. Hayes
Affiliation:
Univ. Tennessee. Knoxville, TN
Donald D. Tyler
Affiliation:
Univ. Tennessee. Knoxville, TN
Thomas C. Mueller*
Affiliation:
Univ. Tennessee. Knoxville, TN
*
Address correspondence to: T.C. Mueller, P.O. Box 1071, Knoxville, TN 37901.

Abstract

This research examined the effect of mechanical soil disturbance (none or tilled) and legume crop residues (none or hairy vetch) on fluometuron dissipation for 2 yr from the top 0 to 8 cm of soil in a 10 yr field experiment. Soil pH in the upper 0 to 8 cm was ≤ 5.6, and soil organic matter was highest in plots not-tilled and plots which had a vetch cover crop. Calculated initial half-lives of fluometuron ranged from 19 to 38 d in the 2 yr. Neither tillage nor cover crop influenced early-season fluometuron dissipation. However, there were detectable amounts of fluometuron in all treatments 1 yr after application.

Type
Soil, Air, and Water
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address of senior author: DuPont Ag Research. 6011 Briar Rosa Drive, Lincoln, NE 68507.

References

Literature Cited

1. Anderson, J.P.E. 1984. Herbicide degradation in soil:influence of microbial biomass. Soil Biol. Biochem. 16: 483489.CrossRefGoogle Scholar
2. Anonymous. 1989. Pages 136137 in Herbicide Handbook of the Weed Science Society of America. 6th edition. Weed Sci. Soc. of Am. Champaign, IL.Google Scholar
3. Bauer, P. J. and Bradow, J. M. 1993. Cover Crops. Pages 1822 in McClelland, M., Valco, T. D. and Frans, R. E. eds. Conservation-Tillage Systems for Cotton. Arkansas Agric. Exp. Stn. Report No. 160.Google Scholar
4. Bouchard, D. C., Lavy, T. L., and Marx, D. B. 1982. Fate of metribuzin, metolachlor, and fluometuron in soil. Weed Sci. 30: 629632.CrossRefGoogle Scholar
5. Bozarth, G. A. and Funderburk, H. H. 1971 Degradation of fluometuron in sandy loam soil. Weed Sci. 19: 691695.CrossRefGoogle Scholar
6. Brown, B. A., Hayes, R. M., Tyler, D. D., and Mueller, T. C. 1994. Effects of tillage and cover crop on fluometuron adsorption and degradation under controlled conditions. Weed Sci. 42: 629634.CrossRefGoogle Scholar
7. Darding, R. L. and Freeman, J. F. 1968. Residual phytotoxicity of fluometuron in soils. Weed Sci. 16: 226229.CrossRefGoogle Scholar
8. Essington, M. E., Tyler, D. D., and Wilson, G. V. 1994. Fluometuron behavior in long-term tillage plots: project summary. Agron. Abstr. p 35.Google Scholar
9. Geissbuhler, H. 1969. The substituted ureas, Pages 79111 in Kearney, P. C. and Kaufman, D. D., eds. Degradation of Herbicides. Marcel Dekker. Inc., New York, NY.Google Scholar
10. Hance, R. J., Embling, S. J., Hill, D., Graham-Bryce, J., and Nicholls, P. 1981. Movement of fluometuron, simazine, 36Cl–1 and 144Ce+3 in soil under field conditions: qualitative aspects. Weed Res. 21: 289297.CrossRefGoogle Scholar
11. Mueller, T. C. and Moorman, T. B. 1991. Liquid chromatographic determination of fluometuron and metabolites in soil. J. Assoc. Off Anal. Chem. 74: 671673.Google Scholar
12. Mueller, T. C., Moorman, T. B., and Snipes, C. E. 1992. Effect of concentration, sorption, and microbial biomass on degradation of the herbicide fluometuron in surface and subsurface soils. J. Agric. Food Chem. 40: 25172522 CrossRefGoogle Scholar
13. Mueller, T. C., Moorman, T. B., and Locke, M. A. 1992. Detection of herbicides using fluorescence spectroscopy. Weed Sci. 40: 270274.CrossRefGoogle Scholar
14. Neely, C. L. 1983. Cover crop, nitrogen, and tillage effects on cotton as indicated by petiole analysis. . Univ. of Tennessee. Knoxville. 108 pp.Google Scholar
15. Rogers, C. B., Talbert, R. E., Mattice, J. D., Lavy, T. L., Frans, R. E. 1985. Residual fluometuron levels in three Arkansas soils under continuous cotton (Gossypium hirsutum) production. Weed Sci. 34: 122130.CrossRefGoogle Scholar
16. Rogers, C. B., Talbert, R. E., and Frans, R. 1986. Effect of cotton (Gossypium hirsutum) herbicide carryover on subsequent crops. Weed Sci. 34: 756760.CrossRefGoogle Scholar
17. Ross, M. A. and Lembi, C. A. 1985. Pages 183185 in Applied Weed Science. Burgess Publ. Co. Minneapolis. MN.Google Scholar
18. Savage, K. E., and Wauchope, R. D. 1974. Fluometuron adsorption-desorption equilibria in soil. Weed Sci. 22: 106110.CrossRefGoogle Scholar
19. Walker, A. 1987. Herbicide persistence in soil. Rev. Weed Sci. 3: 117.Google Scholar
20. Zar, J. 1992. Pages 132133 in Biostatistical Analysis. 2nd edition Prentice Hall, New York, NY.Google Scholar