Skip to main content Accessibility help
×
Home

Effect of Fumigation with 1,3-Dichloropropene and Chloropicrin on Fomesafen Dissipation in Eggplant Plasticulture Production

  • Thomas V. Reed (a1), Nathan S. Boyd (a1), P. Christopher Wilson (a2) and Peter J. Dittmar (a3)

Abstract

Fomesafen is a protoporphyrinogen oxidase (PROTOX) inhibitor that has the potential to be used as an alternative mechanism of action for PRE nutsedge and broadleaf weed control in Florida production of small fruit and vegetables. Fumigation in the raised-bed plasticulture system may increase herbicide persistence. Fomesafen persistence could dissuade Florida growers from using the herbicide for fear of injury to subsequent susceptible crops. Field experiments were conducted in Balm, FL, in 2015 and 2016 to investigate the effect of fumigation on fomesafen dissipation, eggplant tolerance, and purple nutsedge control. Treatments included fomesafen at 0.42 kg ai ha−1, S-metolachlor at 1.06 kg ai ha−1, and a nontreated control in either a fumigated bed injected with a combination of 39% 1,3-dichloropropene and 59.6% chloropicrin at 336 kg ha−1 or no fumigant. Fomesafen concentration in the soil decreased by 83% and 96% from application to harvest in 2015 and 2016, respectively. Fumigation did not affect fomesafen dissipation in either year. At 2 wk after transplant (WATr), fomesafen caused 14% eggplant injury. Injury decreased to less than 5% at 6 WATr. Fomesafen and S-metolachlor treatments did not reduce eggplant height or yields compared with the nontreated control. Fumigation and fomesafen did not decrease purple nutsedge density; however, S-metolachlor applications resulted in a 48% reduction. Further research is needed to assess efficacy on broadleaf and grass weeds.

Copyright

Corresponding author

*Corresponding author’s E-mail: tvreed@ufl.edu

Footnotes

Hide All

Associate Editor for this paper: Timothy L. Grey, University of Georgia

Footnotes

References

Hide All
Becerril, JM, Duke, SO (1989) Protoporphyrin IX content correlates with activity of photobleaching herbicides. Plant Physiol 90:11751181
Bond, W, Walker, A (1989) Aspects of herbicide activity and persistence under low level polyethylene covers. Ann Appl Biol 114:133140
Boyd, NS (2015) Evaluation of preemergence herbicides for purple nutsedge (Cyperus rotundus) control in tomato. Weed Technol 29:480487
Boyd, NS, Reed, T (2016) Strawberry tolerance to bed top and drip-applied preemergence herbicides. Weed Technol 30:492498
Chaudhari, S, Jennings, KM, Monks, DW, Jordan, DL, Gunter, CC, Basinger, NT, Louws, FJ (2016) Response of eggplant (Solanum melongena) grafted onto tomato (Solanum lycopersicum) rootstock to herbicides. Weed Technol 30:207216
Cobucci, T, Prates, HT, Falcão, CLM, Rezende, MMV (1998) Effect of imazamox, fomesafen, and acifluorfen soil residue on rotational crops. Weed Sci 46:258263
Duke, SO, Lydon, J, Becerril, JM, Sherman, TD, Lehnen, LP, Matsumoto, H (1991) Protoporphyrinogen oxidase-inhibiting herbicides. Weed Sci 39:465473
Feng, ZZ, Li, QF, Zhang, J, Zhang, J, Huang, X, Lu, P, Li, SP (2012) Microbial degradation of fomesafen by newly isolated strain Pseudomonas zeshuii BY-1 and the biochemical degradation pathway. J Agric Food Chem 60:71047110
Grey, TL, Vencill, WK, Mantripagada, N, Culpepper, AS (2007) Residual herbicide dissipation from soil covered with low-density polyethylene mulch or left bare. Weed Sci 55:638643
Klose, S, Acosta-Martinez, , Ajwa, HA (2006) Microbial community composition and enzyme activities in a sandy loam soil after fumigation with methyl bromide or alternative biocides. Soil Biol Biochem 38:12431254
Ladd, JN, Brisbane, PG, Butler, JHA, Amato, M (1976) Studies on soil fumigation. III: Effects on enzyme activities, bacterial numbers and extractable ninhydrin reactive compounds. Soil Biol Biochem 8:255260
Leung, SC (1997). Fomesafen: Determination of Fomesafen in Soil and Water (WRC-97-110). Richmond, CA: Zeneca Ag Products Report TMR0741B. 21 p
Li, X (2014). Evaluation of Efficacy, Soil Behavior and Dissipation of Herbicides in Agronomic Crops. Ph.D dissertation. Athens, GA: University of Georgia. 163 p
Lin, K (2009). Analytical Method for the Determination of Residues of Fomesafen in Crop Commodities by LC-MS/MS. Greensboro, NC: Syngenta Crop Protection Report GRM045.01A. 38 p
McAvoy, EJ, Boyd, NS, Ozores-Hampton, M, Roberts, PD, Smith, HA (2015) Eggplant production. Pages 6777 in Dittmar PJ, Freeman JH & Vallad GE eds, Vegetable Production Handbook of Florida 2015–2016. Gainesville, FL: University of Florida/IFAS Extension
Miller, MR, Dittmar, PJ (2014) Effect of PRE and POST-directed herbicides for season-long nutsedge control in bell pepper. Weed Technol 28:518526
Monday, TA, Foshee, WG III, Blythe, EK, Wehtje, GR, Gilliam, CH (2015) Yellow nutsedge (Cyperus esculentus) control and tomato response to application methods of drip-applied herbicides in polyethylene-mulched tomato. Weed Technol 29:625632
Mueller, TC, Boswell, BW, Mueller, SS, Steckel, LE (2014) Dissipation of fomesafen, saflufenacil, sulfentrazone, and flumioxazin from a Tennessee soil under field conditions. Weed Sci 62:664671
Rauch, BJ, Bellinder, RR, Brainard, DC, Lane, M, Thies, JE (2007) Dissipation of fomesafen in New York state soil and potential to cause carryover injury to sweet corn. Weed Technol 21:206212
Reed, T, Boyd, N, Dittmar, P (2016) Application timing influences purple and yellow nutsedge susceptibility to EPTC and fomesafen. Weed Technol 30:743750
Scalla, R, Matringe, M (1994) Inhibition of protoporphyrinogen oxidase as herbicides: diphenyl ethers and related photobleaching herbicides. Rev Weed Sci 6:103132
Shaner, DL. ed, (2014) Herbicide Handbook 10th edn. Lawrence, KS: Weed Science Society of America. Pp13:232233
Stiles, CL, Sams, CE, Robinson, DK, Coffey, DL, Mueller, TC (2000) Influence of metam sodium on the dissipation and residual biological activity of the herbicides EPTC and pebulate in surface soil under black plastic mulch. J Agric Food Chem 48:46814686
Wauchope, RD, Buttler, TM, Hornsby, AG, Augustijn-Beckers, PWM, Burt, JP (1992) The SCS/ARS/CES pesticide properties database for environmental decision-making. Rev Environ Contam Toxicol 123:1155
Weber, JB (1993a) Ionization and sorption of fomesafen and atrazine by soils and soil constituents. Pestic Sci 39:3138
Weber, JB (1993b) Mobility of fomesafen and atrazine in soil columns under saturated and unsaturated flow conditions. Pestic Sci 39:3946
Weissler, MS, Poole, NJ (1982). Mobility of Fomesafen and Degradation Products in Soil Columns. London: Imperial Chemical Industry Report RJ0241B. 3 p
Yamamoto, T, Ultra, VU, Tanaka, S, Sakurai, K, Iwaski, K (2008) Effects of methyl bromide fumigation, chloropicrin fumigation and steam sterilization on soil nitrogen dynamics and microbial properties in a pot culture experiment. Soil Sci Plant Nutr 54:886894

Keywords

Effect of Fumigation with 1,3-Dichloropropene and Chloropicrin on Fomesafen Dissipation in Eggplant Plasticulture Production

  • Thomas V. Reed (a1), Nathan S. Boyd (a1), P. Christopher Wilson (a2) and Peter J. Dittmar (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed