Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-20T04:14:41.469Z Has data issue: false hasContentIssue false

Determination of ACCase Sensitivity and Gene Expression in Quizalofop–Ethyl-Resistant and -Susceptible Barnyardgrass (Echinochloa crus-galli) Biotypes

Published online by Cambridge University Press:  20 January 2017

Zhibo Huan
Affiliation:
Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, P. R. China Plant Protection College, Shandong Agricultural University, Tai'an 271018, P. R. China
Zhi Xu
Affiliation:
Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, P. R. China
Daizhu Lv
Affiliation:
Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, P. R. China
Jinxin Wang*
Affiliation:
Plant Protection College, Shandong Agricultural University, Tai'an 271018, P. R. China
*
Corresponding author's E-mail: wangjx@sdau.edu.cn

Abstract

Mechanisms of herbicide resistance were studied in a quizalofop–ethyl-resistant barnyardgrass biotype. Acetyl-coenzyme A carboxylase (ACCase) sensitivity to quizalofop-p-ethyl was measured by high-performance liquid chromatography and the trend in ACCase gene expression over time was determined using real-time polymerase chain reaction. The results showed that an insensitive ACCase was present in Geqiushan resistant plants (R), with a resistance index of 106. The basal ACCase activities in Geqiushan R and Geqiushan susceptible plants (S) were similar, at 1.20 and 1.17 ng malonyl-CoA min−1 µg−1 extract protein, respectively. Basal ACCase gene expression in Geqiushan R was similar to that in Geqiushan S. The relative expression of ACCase gene decreased after spraying quizalofop–ethyl at 60 g ai ha−1 in Geqiushan S, whereas it was almost not changed in Geqiushan R. From these results we concluded that plastid ACCase sensitivity change might be responsible for the resistance and gene overexpression does not play a role in this resistance.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Bradford, M. M. 1976. A rapid and sensitive method for quantification of microgram quantities of protein using the principle of protein–dye binding. Anal Biochem. 72:248254.Google Scholar
Bradley, K. W., Wu, J. R., Hatzios, K. K., and Hagood, E. S. 2001. The mechanism of resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in a johnsongrass biotype. Weed Sci. 49:477484.Google Scholar
Bryant, P. A., Smyth, G. K., Browne, R. R., and Curtis, N. 2009. Detection of gene expression in an individual cell type within a cell mixture using microarray analysis. Plos One 4(2):110.CrossRefGoogle Scholar
Budiani, A., Santoso, D., Aswidinnoor, H., and Suwanto, A. 2008. ACCase activity of oil palm mesocarp and cloning of gene fragment encoding biotin carboxylase subunit of ACCase. Indones. J. Agric. 1:4450.Google Scholar
Caretto, S., Giardina, M. C., Nicolodi, C., and Mariotti, D. 1994. Chlorsulfuron resistance in Daucus carota cell lines and plants: involvement of gene amplification. Theor. Appl. Genet. 88:520524.CrossRefGoogle ScholarPubMed
Cocker, K. M., Coleman, J.O.D., Blair, A. M., Clarke, J. H., and Moss, S. R. 2000. Biochemical mechanisms of cross-resistance to aryloxyphenoxypropionate and cyclohexanedione herbicides in populations of Avena spp. Weed Res. 40:323334.Google Scholar
Cocker, K. M., Moss, S. R., and Coleman, J.O.D. 1999. Multiple mechanisms of resistance to fenoxaprop-p-ethyl in United Kingdom and other European populations of herbicide-resistant Alopecurus myosuroides (black-grass). Pestic. Biochem. Physiol. 65:169180.Google Scholar
Cruz-Hipolito, H., Dominguez-Valenzuela, J. A., Osuna, M. D., and DePrado, R. 2012. Resistance mechanism to acetyl coenzyme A carboxylase inhibiting herbicides in Phalaris paradoxa collected in Mexican wheat fields. Plant Soil. 355:121130.Google Scholar
Cruz-Hipolito, H., Osuna, M. D., Dominguez-Valenzuela, J. A., Espinoza, N., and DePrado, R. 2011. Mechanism of resistance to ACCase-inhibiting herbicides in wild oat (Avena fatua) from Latin America. J. Agric. Food Chem. 59:72617267.Google Scholar
Delye, C., Zhang, X. Q., Michel, S., Matejicek, A., and Powles, S. B. 2005. Molecular bases for sensitivity to acetyl-coenzyme A carboxylase inhibitors in black-grass. Plant Physiol. 137:794806.CrossRefGoogle ScholarPubMed
De Prado, J. L., Osuna, M. D., Shimabukuro, R. H., and DePrado, R. 1998. Biochemical and physiological resistance mechanisms to diclofop-methyl in Lolium rigidum . Pages 681689 in Proceedings of the 50th International Symposium on Crop Protection. Ghent, Belgium Ghent University.Google Scholar
De Prado, R., Osuna, M. D., and Fischer, A. J. 2004. Resistance to ACCase inhibitor herbicides in a green foxtail (Setaria viridis) biotype in Europe. Weed Sci. 52:506512.Google Scholar
Dewaele, E., Forlani, G., Degrande, D., Nielsen, E., and Rambour, S. 1997. Biochemical characterization of chlorsulfuron resistance in Cichorium intybus L. var. Witloof. J. Plant Physiol. 151:109114.Google Scholar
Donn, G., Tischer, E., Smith, J. A., and Goodman, H. M. 1984. Herbicide-resistant alfalfa cells: an example of gene amplification in plants. J. Mol. Appl. Genet. 2:621635.Google Scholar
Egli, M. A., Gengenbach, B. G., Gronwald, W. J., Somers, D. A., and Wyse, D. L. 1993. Characterization of maize acetyl-coenzyme A carboxylase. Plant Physiol. 101:449506.CrossRefGoogle ScholarPubMed
Gaines, T. A., Zhang, W., Wang, D., Bukuna, B., Chisholma, S. T., Shaner, D. L., Nissena, S. J., Patzoldt, W. L., Tranel, P. J., Culpepper, A. S., Greyf, T. L., Webster, T. M., Vencill, W. K., Sammons, R. D., Jiang, J., Prestoni, C., Leacha, J. E., and Westraa, P. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc. Natl. Acad. Sci. U.S.A. 107:10291034.Google Scholar
Gengenbach, B. G., Somers, D. A., Wyse, D. L., Gronwald, J. W., Egli, M. A., and Lutz, S. M. 2001 Apr 24. Transgenic plants expressing maize acetyl CoA carboxylase gene and method of altering oil content. U. S. patent 6,222,099.Google Scholar
Gimenez-Espinosa, R., Plaisance, K. L., Plank, D. W., Gronwald, J. W., and DePrado, R. 1999. Propaquizafop absorption, translocation, metabolism, and effect on acetyl-CoA carboxylase isoforms in Chickpea (Cicer arietinum L.). Pestic. Biochem. Physiol. 65:140150.Google Scholar
Hu, M. and Polyak, K. 2006. Serial analysis of gene expression. Nat. Protoc. 1:17431760.Google Scholar
Huan, Z. B., Jin, T., Zhang, S. Y., and Wang, J. X. 2011b. Cloning and sequence analysis of plastid acetyl-CoA carboxylase cDNA from two Echinochloa crus-galli biotypes. J. Pestic. Sci. 36:461466.Google Scholar
Huan, Z. B., Zhang, H. J., Hou, Z., Zhang, S. Y., Zhang, Y., Liu, W. T., Bi, Y. L., and Wang, J. X. 2011a. Resistance level and metabolism of barnyard grass (Echinochloa crusgalli (L.) Beauv.) populations to quizalofop-P-ethyl in Heilongjiang province, China. Agric. Sci. China 10:19141922.Google Scholar
Kang, K., Lee, K., Park, S., Lee, S., Kim, Y. S., and Back, K. 2010. Overexpression of rice ferrochelatase I and II leads to increased susceptibility to oxyfluorfen herbicide in transgenic rice. J. Plant Biol. 53:291296.Google Scholar
Konishi, T. and Sasaki, Y. 1994. Compartmentalization of two forms of acetyl-CoA carboxylase in plants and the origin of their tolerance toward herbicides. Plant Biol. 91:35983601.Google Scholar
Konishi, T., Shinohara, K., Yamada, K., and Sasaki, Y. 1996. Acetyl-CoA carboxylase in higher plants—most plants other than Gramineae have both the prokaryotic and the eukaryotic forms of this enzyme. Plant Cell. Physiol. 37:117122.CrossRefGoogle ScholarPubMed
Kuk, Y., Wu, J., Derr, J. F., and Hatzios, K. K. 1999. Mechanism of fenoxaprop resistance in an accession of smooth crabgrass (Digitaria ischaemum). Pestic. Biochem. Physiol. 64:112123.Google Scholar
Leach, G. E., Devine, M. D., Kirkwood, R. C., and Marshall, G. 1995. Target enzyme-based resistance to acetyl-coenzyme A carboxylase inhibitors in Eleusine indica . Pestic. Biochem. Physiol. 51:129136.CrossRefGoogle Scholar
Levert, K. L., Waldrop, G. L., and Stephens, J. M. 2002. A biotin analog inhibits acetyl-CoA carboxylase activity and adipogenesis. J. Biol. Chem. 277:1634716350.Google Scholar
Liu, W. J., Harrison, D. K., Chalupska, D., Gornicki, P., O'Donnell, C. C., Adkins, S. W., Haselkorn, R., and Williams, R. R. 2007. Single-site mutations in the carboxyltransferase domain of plastid acetyl-CoA carboxylase confer resistance to grass-specific herbicides. Proc. Natl. Acad. Sci. U.S.A. 104:36273632.Google Scholar
Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402408.Google Scholar
Menendez, J. and DePrado, R. 1996. Diclofop-methyl cross-resistance in a chlorotoluron-resistant biotype of Alopecurus myosuroides . Pestic. Biochem. Physiol. 56:123133.Google Scholar
Neve, P. and Powles, S. 2005. High survival frequencies at low herbicide use rates in populations of Lolium rigidum result in rapid evolution of herbicide resistance. Heredity. 95:485492.Google Scholar
Ohlrogge, J. and Browse, J. 1995. Lipid biosynthesis. Plant Cell 7:957970.Google Scholar
Parker, W. B., Somers, D. A., Wyse, D. L., Keith, R. A., Burton, J. D., Gronwald, J. W., and Gengenbach, B. G. 1990. Selection and characterization of sethoxydim-tolerant maize tissue cultures. Plant Physiol. 92:12201225.Google Scholar
Pline-Srnic, W. 2006. Physiological mechanisms of glyphosate resistance. Weed Technol. 20:290300.Google Scholar
Prado, J.L.D., Rafael, R.A.D., and Shimabukuro, R. H. 1999. The effect of diclofop on membrane potential, ethylene induction, and herbicide phytotoxicity in resistant and susceptible biotypes of grasses. Pestic. Biochem. Physiol. 63:114.Google Scholar
Roesler, K., Shintani, D., Savage, L., Boddupalli, S., and Ohlrogge, J. 1997. Targeting of the Arabidopsis homomeric acetyl-coenzyme A carboxylase to plastids of rapeseeds. Plant Physiol. 113:7581.Google Scholar
Sasaki, Y., Konishi, T., and Nagano, Y. 1995. Acetyl-Coenzyme A carboxylase in plants. Plant Physiol. 108:445449.Google Scholar
Sasaki, Y. and Nagano, Y. 2004. Plant acetyl-CoA carboxylase: structure, biosynthesis, regulation, and gene manipulation for plant breeding. Biosci. Biotechnol. Biochem. 68:11751184.Google Scholar
Seefeldt, S. S., Fuerst, E. P., Gealy, D. R., Shukla, A., Irzyk, G. P., and Devine, M. D. 1996. Mechanisms of resistance to diclofop of two wild oat (Avena fatua) biotypes from the Willamette Valley of Oregon. Weed Sci. 44:776781.Google Scholar
Shukla, A., Dupont, S., and Devine, M. D. 1997. Resistance to ACCase-inhibitor herbicides in wild oat: evidence for target site-based resistance in two biotypes from Canada. Pestic. Biochem. Physiol. 57:147155.Google Scholar
Vila-Aiub, M. M., Neve, P., and Powles, S. B. 2005. Resistance cost of a cytochrome P450 herbicide metabolism mechanism but not an ACCase target site mutation in a multiple resistant Lolium rigidum population. New Phytol. 167:787796.Google Scholar
Volenberg, D. and Stoltenberg, D. 2002. Altered acetyl-coenzyme A confers resistance to clethodim, fluazifop and sethoxydim in Setaria faberi and Digitaria sanguinalis . Weed Res. 42:342350.Google Scholar
Wun, S. C. 2008. Real-time PCR as a tool to study weed biology. Weed Sci. 56:290296.Google Scholar
Yamaguchi, Y., Yatsushiro, S., Yamamura, S., Abe, H., Abe, K., Watanabe, M., Kajimoto, K., Shinohara, Y., Baba, Y., and Kataoka, M. 2011. Ribonuclease protection assay on microchip electrophoresis. Analyst 136:22472251.Google Scholar
Yang, C., Dong, L. Y., Li, J., and Moss, S. R. 2007. Identification of Japanese foxtail (Alopecurus japonicus) resistant to haloxyfop using three different assay techniques. Weed Sci. 55:537540.Google Scholar
Yu-Yau, J. S., Hepburn, A. G., and Widholm, J. M. 1992. Glyphosate selected amplification of the 5-enolpyruvylshikimate-3-phosphate synthase gene in cultured carrot cells. Mol. Gen. Genet. 232:377382.Google Scholar
Zhang, X. Q. and Powles, S. B. 2006. Six amino acid substitutions in the carboxyl-transferase domain of the plastidic acetyl-CoA carboxylase gene are linked with resistance to herbicides in a Lolium rigidum population. New Phytol. 172:636645.Google Scholar