Skip to main content Accessibility help

Changes in the Transcriptome of Dry Leafy Spurge (Euphorbia esula) Seeds Imbibed at a Constant and Alternating Temperature

  • Michael E. Foley (a1), Wun S. Chao (a1), Münevver Doğramaci (a1), David P. Horvath (a1) and James V. Anderson (a1)...


Leafy spurge seeds are responsive to alternating temperature rather than constant temperature for germination. Transcriptome changes of dry leafy spurge seeds and seeds imbibed for 1 and 3 d at 20 C constant (C) and 20 : 30 C alternating (A) temperature were determined by microarray analysis to examine temperature responsiveness. Principal component analysis revealed differences in the transcriptome of imbibed seeds based on the temperature regime. Computational methods in bioinformatics parsed the data into overrepresented AraCyc pathways and gene regulation subnetworks providing biological context to temperature responses. After 1 d of imbibition, the degradation of starch and sucrose leading to anaerobic respiration were common pathways at both temperature regimes. Several overrepresented pathways unique to 1 d A were associated with generation of energy, reducing power, and carbon substrates; several of these pathways remained overrepresented and up-regulated at 3 d A. At 1 d C, pathways for the phytohormones jasmonic acid and brassinosteroids were uniquely overrepresented. There was little similarity in overrepresented pathways at 1 d C between leafy spurge and arabidopsis seeds, indicating species-specific effects upon imbibition of dry seeds. Overrepresented gene subnetworks at 1 d and 3 d at both temperature regimes related to signaling processes and stress responses. A major overrepresented subnetwork unique to 1 d C related to photomorphogenesis via the E3 ubiquitin ligase COP1. At 1 d A, major overrepresented subnetworks involved circadian rhythm via LHY and TOC1 proteins and expression of stress-related genes such as DREB1A, which is subject to circadian regulation. Collectively, substantial differences were observed in the transcriptome of leafy spurge seeds imbibed under conditions that affect the capacity to germinate.


Corresponding author

Corresponding author's E-mail:


Hide All
Achard, P. and Genschik, P. 2009. Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J. Exp. Bot. 60:10851092.
Ali-Rachedi, S., Bouinot, D., Wagner, M-H., Bonnet, M., Sotta, B., Grappin, P., and Jullien, M. 2004. Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana . Planta. 219:479488.
Anderson, G. L., Prosser, C. W., Wendel, L. E., Delfosse, E. S., and Faust, R. M. 2003. The Ecological Areawide Management (TEAM) of leafy spurge program of the United States Department of Agriculture–Agricultural Research Service. Pest Manag. Sci. 59:609613.
Anderson, J. V., Horvath, D. P., Chao, W. S., et al. 2007. Characterization of an EST database for the perennial weed leafy spurge: an important resource for weed biology research. Weed Sci. 55:193203.
Arc, E., Galland, M., Cueff, G., Godin, B., Lounifi, I., Job, D., and Rajjou, L. 2011. Reboot the system thanks to protein post-translational modifications and proteome diversity: how quiescent seeds restart their metabolism to prepare seedling establishment. Proteomics. 11:16061618.
Auge, G. A., Perelman, S., Crocco, C. D., Sánchez, R. A., and Botto, J. F. 2009. Gene expression analysis of light-modulated germination in tomato seeds. New Phytol. 183:301314.
Baker, H. G. 1974. The evolution of weeds. Ann. Rev. Ecol. Syst. 5:124.
Barrero, J. M., Talbot, M. J., White, R. G., Jacobsen, J. V., and Gubler, F. 2009. Anatomical and transcriptomic studies of the coleorhiza reveal the importance of this tissue in regulating dormancy in barley. Plant Physiol. 150:10061021.
Baskin, C. C. and Baskin, J. M. 1998. Seeds: Ecology, Biogeography, and Evolution of Dormancy and Germination. San Diego, CA Academic Press. 666 p.
Benech-Arnold, R. L., Sánchez, R. A., Forcella, F., Kruka, B. C., and Ghersa, C. M. 2000. Environmental control of dormancy in weed seed banks in soil. Field Crops Res. 67:105122.
Brown, E. O. and Porter, R. H. 1942. The viability and germination of seeds of Convolvulus arvensis L. and other perennial weeds. Iowa Agric. Exp. Stn. Res. Bull. 294:475504.
Browse, J. 2009. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu. Rev. Plant Biol. 60:183205.
Cadman, C. S. C., Toorop, P. E., Hilhorst, H. W. M., and Finch-Savage, W. E. 2006. Gene expression profiles of Arabidopsis Cvi seeds during dormancy cycling indicate a common underlying dormancy control mechanism. Plant J. 46:805822.
Carranco, R. l., Espinosa, J. M., Prieto-Dapena, P., Almoguera, C., and Jordano, J. 2010. Repression by an auxin/indole acetic acid protein connects auxin signaling with heat shock factor-mediated seed longevity. Proc. Natl. Acad. Sci. USA. 107:2190821913.
Carrera, E., Holman, T., Medhurst, A., Dietrich, D., Footitt, S., Theodoulou, F. L., and Holdsworth, M. J. 2008. Seed after-ripening is a discrete developmental pathway associated with specific gene networks in Arabidopsis. Plant J. 53:214224.
Chao, W. S. 2008. Real-time PCR as a tool to study weed biology. Weed Sci. 56:290296.
Chiang, G. C. K., Barua, D., Kramer, E. M., Amasino, R. M., and Donohue, K. 2009. Major flowering time gene, FLOWERING LOCUS C, regulates seed germination in Arabidopsis thaliana . Proc. Natl. Acad. Sci. USA. 106:1166111666.
Churchill, G. A. 2002. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 32:490495.
Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. 2010. Abscisic acid: emergence of a core signaling network. Annu. Rev. Plant Biol. 61:651679.
Dave, A., Hernández, M. L., He, Z., Andriotis, V. M. E., Vaistij, F. E., Larson, T. R., and Graham, I. A. 2011. 12-oxo-phytodienoic acid accumulation during seed development represses seed germination in Arabidopsis . Plant Cell. 23:583599.
Debeaujon, I. and Koornneef, M. 2000. Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol. 122:415424.
de Montaigu, A., Tóth, R., and Coupland, G. 2010. Plant development goes like clockwork. Trends Genet. 26:296306.
Dietrich, K., Weltmeier, F., Ehlert, A., Weiste, C., Stahl, M., Harter, K., and Dröge-Laser, W. 2011. Heterodimers of the Arabidopsis transcription factors bZIP1 and bZIP53 reprogram amino acid metabolism during low energy stress. Plant Cell. 23:381395.
Dure, L. and Waters, L. 1965. Long-lived messenger RNA: evidence from cotton seed germination. Science. 147:410412.
Eisen, M. B., Spellman, P. T., Brown, P. O., and Botstein, D. 1998. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA. 95:1486314868.
Fatland, B. L., Nikolau, B. J., and Wurtele, E. S. 2005. Reverse genetic characterization of cytosolic acetyl-CoA generation by ATP-citrate lyase in Arabidopsis. Plant Cell. 17:182203.
Fenner, M. and Thompson, K. 2005. The Ecology of Seeds. Cambridge, UK Cambridge University Press. 260 p.
Fernandez, O., Béthencourt, L., Quero, A., Sangwan, R. S., and Clément, C. 2010. Trehalose and plant stress responses: friend or foe? Trends Plant Sci. 15:409417.
Finch-Savage, W. E., Cadman, C. S. C., Toorop, P. E., Lynn, J. R., and Hilhorst, H. W. M. 2007. Seed dormancy release in Arabidopsis Cvi by dry after-ripening, low temperature, nitrate and light shows common quantitative patterns of gene expression directed by environmentally specific sensing. Plant J. 51:6078.
Finch-Savage, W. E. and Leubner-Metzger, G. 2006. Seed dormancy and the control of germination. New Phytol. 171:501523.
Foley, M. E., Anderson, J. V., Chao, W. S., Doğramaci, M., and Horvath, D. P. 2010. Initial changes in the transcriptome of Euphorbia esula seeds induced to germinate with a combination of constant and diurnal alternating temperatures. Plant Mol. Biol. 73:131142.
Foley, M. E. and Chao, W. S. 2008. Growth regulators and chemicals stimulate germination of leafy spurge (Euphorbia esula) seeds. Weed Sci. 56:516522.
Fowler, S. G., Cook, D., and Thomashow, M. F. 2005. Low temperature induction of Arabidopsis CBF1, 2, and 3 is gated by the circadian clock. Plant Physiol. 137:961968.
Gaines, T. A., Zhang, W., Wang, D., et al. 2010. Gene amplification confers glyphosate resistance in Amaranthus palmeri . Proc. Natl. Acad. Sci. USA. 107:10291034.
Gaufichon, L., Reisdorf-Cren, M., Rothstein, S. J., Chardon, F., and Suzuki, A. 2010. Biological functions of asparagine synthetase in plants. Plant Sci. 179:141153.
Geneve, R. L. 2003. Impact of temperature on seed dormancy. Hortscience. 38:336341.
Guo, J., Wu, J., Ji, Q., Wang, C., Luo, L., Yuan, Y., Wang, Y., and Wang, J. 2008. Genome-wide analysis of heat shock transcription factor families in rice and Arabidopsis . J. Genet. Genomics. 35:105118.
Horvath, D. P., Chao, W. S., Suttle, J. C., Thimmapuram, J., and Anderson, J. V. 2008. Transcriptome analysis identifies novel responses and potential regulatory genes involved in seasonal dormancy transitions of leafy spurge (Euphorbia esula L.). BMC Genomics. 9:536.
Howell, K. A., Narsai, R., Carroll, A., Ivanova, A., Lohse, M., Usadel, B., Millar, A. H., and Whelan, J. 2009. Mapping metabolic and transcript temporal switches during germination in rice highlights specific transcription factors and the role of RNA instability in the germination process. Plant Physiol. 149:961980.
Hsu, S. C., Belmonte, M. F., Harada, J. J., and Inoue, K. 2010. Indispensable roles of plastids in Arabidopsis thaliana embryogenesis. Curr. Genomics. 11:338349.
Jakoby, M., Weisshaar, B., Dröge-Laser, W., Vicente-Carbajosa, J., Tiedemann, J., Kroj, T., and Parcy, F. 2002. bZIP transcription factors in Arabidopsis . Trends Plant Sci. 7:106111.
Joshi, A., Olson, D. L., and Carey, D. R. 2009. Overwintering survival of Aphthona beetles (Coleoptera: Chrysomelidae): a biological control agent of leafy spurge released in North Dakota. Environ. Entomol. 38:15391545.
Lee, K. P., Piskurewicz, U., Tureĉková, V., Strnad, M., and Lopez-Molina, L. 2010. A seed coat bedding assay shows that RGL2-dependent release of abscisic acid by the endosperm controls embryo growth in Arabidopsis dormant seeds. Proc. Natl. Acad. Sci. USA. 107:1910819113.
Leivar, P. and Quail, P. H. 2011. PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci. 16:1928.
Lesica, P. and Hanna, D. 2009. Effect of biological control on leafy spurge (Euphorbia esula) and diversity of associated grasslands over 14 years. Invasive Plant Sci. Manag. 2:151157.
Lin, R. and Wang, H. 2007. Targeting proteins for degradation by Arabidopsis COP1: teamwork is what matters. J. Integr. Plant Biol. 49:3542.
Liu, Y., Koornneef, M., and Soppe, W. J. J. 2007. The absence of histone H2B monoubiquitination in the Arabidopsis hub1 (rdo4) mutant reveals a role for chromatin remodeling in seed dormancy. Plant Cell. 19:433444.
Lopez-Molina, L., Mongrand, S., McLachlin, D. T., Chait, B. T., and Chua, N. H. 2002. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J. 32:317328.
Lym, R. G. 2005. Leafy spurge Euphorbia esula L. Pages 99118 in Duncan, C. L., and Clark, J. K., eds. Invasive Plants of Range and Wildlands and Their Environmental, Economic, and Societal Impacts. Lawrence, KS Weed Science Society of America.
Ma, L., Gao, Y., Qu, L., Chen, Z., Li, J., Zhao, H., and Deng, X. W. 2002. Genomic evidence for COP1 as a repressor of light-regulated gene expression and development in Arabidopsis. Plant Cell. 14:23832398.
Mueller, L. A., Zhang, P., and Rhee, S. Y. 2003. AraCyc: a biochemical pathway database for Arabidopsis. Plant Physiol. 132:453460.
Nakabayashi, K., Okamoto, M., Koshiba, T., Kamiya, Y., and Nambara, E. 2005. Genome-wide profiling of stored mRNA in Arabidopsis thaliana seed germination: epigenetic and genetic regulation of transcription in seed. Plant J. 41:697709.
Nambara, E., Okamoto, M., Tatematsu, K., Yano, R., Seo, M., and Kamiya, Y. 2010. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 20:5567.
Novillo, F., Alonso, J. M., Ecker, J. R., and Salinas, J. 2004. CBF2/DREB1C is a negative regulator of CBF1/DREB1B and CBF3/DREB1A expression and plays a central role in stress tolerance in Arabidopsis . Proc. Natl. Acad. Sci. USA. 101:39853990.
Oh, E., Kang, H., Yamaguchi, S., Park, J., Lee, D., Kamiya, Y., and Choi, G. 2009. Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis . Plant Cell. 21:403419.
Owen, M. J., Michael, P. J., Renton, M., Steadman, K. J., and Powles, S. B. 2011. Towards large-scale prediction of Lolium rigidum emergence. II. Correlation between dormancy and herbicide resistance levels suggests an impact of cropping systems. Weed. Res. 51:133141.
Parcy, F., Valon, C., Raynal, M., Gaubiercomella, P., Delseny, M., and Giraudat, J. 1994. Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell. 6:15671582.
Penfield, S., Gilday, A. D., Halliday, K. J., and Graham, I. A. 2006. DELLA-mediated cotyledon expansion breaks coat-imposed seed dormancy. Curr. Biol. 16:23662370.
Peng, Y., Abercrombie, L. L., Yuan, J. S., Riggins, C. W., Sammons, R. D., Tranel, P. J., and Stewart, C. N. 2010. Characterization of the horseweed (Conyza canadensis) transcriptome using GS-FLX 454 pyrosequencing and its application for expression analysis of candidate non-target herbicide resistance genes. Pest. Manag. Sci. 66:10531062.
Pestsova, E., Meinhard, J., Menze, A., Fischer, U., Windhövel, A., and Westhoff, P. 2008. Transcript profiles uncover temporal and stress-induced changes of metabolic pathways in germinating sugar beet seeds. BMC Plant Biol. 8:122.
Preston, J., Tatematsu, K., Kanno, Y., Hobo, T., Kimura, M., Jikumaru, Y., Yano, R., Kamiya, Y., and Nambara, E. 2009. Temporal expression patterns of hormone metabolism genes during imbibition of Arabidopsis thaliana seeds: a comparative study on dormant and non-dormant accessions. Plant Cell Physiol. 50:17861800.
Steckel, L. E., Sprague, C. L., Stoller, E. W., and Wax, L. M. 2004. Temperature effects on germination of nine Amaranthus species. Weed Sci. 52:217221.
Steinbauer, G. P. and Grigsby, B. 1957. Interaction of temperature, light, and moistening agent in the germination of weed seeds. Weeds. 5:175182.
Stewart, C. N., Tranel, P. J., Horvath, D. P., Anderson, J. V., Rieseberg, L. H., Westwood, J. H., Mallory-Smith, C. A., Zapiola, M. L., and Dlugosch, K. M. 2009. Evolution of weediness and invasiveness: Charting the course for weed genomics. Weed. Sci. 57:451462.
Subramanian, A., Tamayo, P., and Mootha, V. K. 2005. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA. 102:1554515550.
Sun, T. 2011. The molecular mechanism and evolution of the GA-GID1-DELLA signaling module in plants. Curr. Biol. 21:R338R345.
Sweetlove, L. J., Beard, K. F. M., Nunes-Nesi, A., Fernie, A. R., and Ratcliffe, R. G. 2010. Not just a circle: flux modes in the plant TCA cycle. Trends Plant Sci. 15:462470.
Thompson, K. and Grime, J. P. 1983. A comparative study of germination responses to diurnally-fluctuating temperatures. J. Appl. Ecol. 20:141156.
To, A., Valon, C., Savino, G., Guilleminot, J., Devic, M., Giraudat, J., and Parcy, F. 2006. A network of local and redundant gene regulation governs Arabidopsis seed maturation. Plant Cell. 18:16421651.
Toh, S., Imamura, A., Watanabe, A., et al. 2008. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of gibberellin action in Arabidopsis seeds. Plant Physiol. 146:13681385.
Weller, S. C., Bressan, R. A., Goldsbrough, P. B., Fredenburg, T. B., and Hasegawa, P. M. 2001. The effect of genomics on weed management in the 21st century. Weed. Sci. 49:282289.
Wilson, I. D., Barker, G. L., Lu, C., Coghill, J. A., Beswick, R. W., Lenton, J. R., and Edwards, K. J. 2005. Alteration of the embryo transcriptome of hexaploid winter wheat (Triticum aestivum cv. Mercia) during maturation and germination. Funct. Integr. Genomics. 5:144154.


Related content

Powered by UNSILO
Type Description Title
Supplementary materials

Foley et al. supplementary material
Table S1

 Unknown (20 KB)
20 KB
Supplementary materials

Foley et al. supplementary material
Table S2

 Unknown (28 KB)
28 KB
Supplementary materials

Foley et al. supplementary material
Table S3

 Unknown (833 KB)
833 KB
Supplementary materials

Foley et al. supplementary material
Figure S1

 Word (115 KB)
115 KB

Changes in the Transcriptome of Dry Leafy Spurge (Euphorbia esula) Seeds Imbibed at a Constant and Alternating Temperature

  • Michael E. Foley (a1), Wun S. Chao (a1), Münevver Doğramaci (a1), David P. Horvath (a1) and James V. Anderson (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.