Article contents
Backcrossing Provides an Avenue for Gene Introgression from Wheat to Jointed Goatgrass (Aegilops cylindrica) in the U.S. Great Plains
Published online by Cambridge University Press: 20 January 2017
Abstract
Jointed goatgrass is an exotic species introduced into the western United States from Eurasia. The weed is an agricultural pest infesting winter wheat fields and causing economic loss. Common ancestry between the two species enables interspecific hybridization, thus providing a mechanism for gene flow to occur. This can facilitate the accumulation of novel genes, which could increase the wild species' competitiveness with wheat and its ability to invade novel habitats. Interest in the development of transgenic wheat cultivars has increased the concern for interspecific gene flow. Gene introgression requires recurrent backcrossing to the weedy species after the initial hybridization event. Field experiments were conducted at two locations in Colorado in 2007–2008 and 2008–2009, with jointed goatgrass acting as the sole source of viable pollen for fertilization of transplanted hybrid plants. Backcrossing rates were determined by conducting germination studies on spikes collected from a total of 206 hybrid plants. Pollination by jointed goatgrass led to the production of 463 BC1 plants from seed produced on these 206 hybrid plants. Ninety-five percent confidence intervals estimate the rate of backcrossing at 0.028 to 0.306% and 0.077 to 0.604%, with medians of 0.062 and 0.152%, respectively, at the two locations. The results demonstrate that backcrossing to jointed goatgrass can occur, despite low rates of hybrid fertility. Subsequent backcrossing would make it likely that a wheat gene conferring a selective advantage will introgress into the weedy population. For the U.S. Great Plains, it is possible that transgenic wheat cultivars will be released in the future and determining proper management of these cultivars is necessary to minimize hybridization and advantageous gene introgression into weedy relatives.
Keywords
- Type
- Weed Biology and Ecology
- Information
- Copyright
- Copyright © Weed Science Society of America
References
Literature Cited
- 2
- Cited by