Skip to main content Accessibility help

Amino Acid Substitutions in the Acetolactate Synthase Gene of Red Rice (Oryza sativa) Confer Resistance to Imazethapyr

  • Marites A. Sales (a1), Vinod K. Shivrain (a1), Nilda R. Burgos (a1) and Yong I. Kuk (a1)


Two red rice accessions from Arkansas have been found to be resistant to the labeled rate of imazethapyr, which is used to control red rice in ClearfieldTM rice. Full-length amplification of the acetolactate synthase (ALS) gene in imazethapyr-resistant red rice revealed a coding sequence of 1,935 base pairs, which is the same as that of the cultivated rice. Coding sequences were generated from four red rice accessions collected from different geographical regions in Arkansas, consisting of accessions that were either resistant or susceptible to imazethapyr. Nucleotide sequence alignments identified six base polymorphisms, three of which resulted in amino acid substitutions in the ALS gene. One amino acid substitution, Gly654Glu, involves a residue required for imazethapyr binding to the ALS. The other substitution, Val669Met, implies conformational changes in the ALS structure that enhances binding of thiamine diphosphate, an ALS cofactor. These novel amino acid substitutions first reported for ALS-resistant red rice accessions support the hypothesis that ALS-resistant red rice can evolve with sustained herbicide selection pressure. Thus, it behooves growers to integrate the Cleafield rice technology with other tools to achieve a successful, long-term weed management program.


Corresponding author

Corresponding author's E-mail:


Hide All
Avila, L. A., Lee, D. J., Senseman, S. A., McCauley, G. N., Chandler, J. M., and Cothren, J. T. 2005. Assessment of acetolactate synthase (ALS) tolerance to imazethapyr in red rice ecotypes (Oryza spp.) and imidazolinone tolerant/resistant rice (Oryza sativa) varieties. Pest Manage. Sci. 61:171178.
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117835.
Burgos, N. R., Norsworthy, J. K., Scott, R. C., and Smith, K. L. 2008. Red rice status after five years of ClearfieldTM rice. Weed Technol. 22:200208.
Counce, P. A., Keisling, T. C., and Mitchell, A. J. 2000. A uniform, objective, adaptive system for expressing rice development. Crop Sci. 40:436443.
Craigmiles, J. P. 1978. Introduction. Pages 56. in Eastin, E. F. Red Rice Research and Control. College Station, TX Texas Agricultural Experiment Station Bulletin B-1270.
Croughan, T. P., Utomo, H. S., Sanders, D. E., and Braveman, M. P. 1996. Herbicide-resistant rice offers potential solution to red rice problem. LA Agric. 39:1012.
Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:1115.
Gealy, D. R., Tai, T. H., and Sneller, C. H. 2002. Identification of red rice, rice, and hybrid populations using microsatellite markers. Weed Sci. 50:333339.
Griffin, J. L., Baker, J. B., Dunand, R. T., and Sonnier, E. A. 1986. Red rice control in rice and soybeans in southwest Louisiana. Baton Rouge, LA Louisiana State University Agric. Center Publ. 776.
Hattori, J., Rutledge, R., Labbé, H., Brown, D., Sunohara, G., and Miki, B. 1992. Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance. Mol. Gen. Genet. 232:167173.
Haughn, G. W. and Sommerville, C. R. 1990. A mutation causing imidazolinone resistance maps to the Csr1 locus of Arabidopsis thaliana . Plant Physiol. 92:10811085.
Hawkes, T. R., Howard, J. L., and Pontin, S. E. 1989. Herbicides that inhibit the biosynthesis of branched chain amino acids. Pages 113136. in Dodge, A. D. Herbicides and Plant Metabolism. Society for Experimental Biology Seminar Series, Volume 38. London Cambridge University Press.
Jander, G., Baerson, S. R., Hudak, J. A., Gonzalez, K. A., Gruys, K. J., and Last, R. L. 2003. Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol. 131:139146.
Kim, J., Beak, D. G., Kim, Y. T., Choi, J. D., and Yoon, M. Y. 2004. Effects of deletions at the C-terminus of tobacco acetohydroxyacid synthase on the enzyme activity and cofactor binding. Biochem. J. 384:5968.
Kimura, M. 1983. The Neutral Theory of Molecular Evolution. New York Cambridge University Press. 1367.
Kuk, Y. I., Burgos, N. R., and Shivrain, V. K. 2008. Natural tolerance to imazethapyr in red rice (Oryza sativa). Weed Sci. 56:111.
Levy, J. R. Jr., Bond, J. A., Webster, E. P., Griffin, J. L., Zhang, W. P., and Linscombe, S. D. 2006. Imidazolinone-tolerant rice response to imazethapyr application. Weed Technol. 20:389393.
Mazur, B. J., Chui, C. F., and Smith, J. K. 1987. Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol. 85:11101117.
McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., and Duggleby, R. G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. U. S. A. 103:569573.
Norsworthy, J. K., Burgos, N. R., Scott, R. C., and Smith, K. L. 2007. Consultant perspectives on weed management needs in Arkansas rice. Weed Technol. 21:832839.
Ottis, B. V., O'Barr, J. H., McCauley, G. N., and Chandler, J. M. 2004. Imazethapyr is safe and effective for imidazolinone-tolerant rice grown on coarse-textured soils. Weed Technol. 18:10961100.
Pang, S. S., Duggleby, R. G., and Guddat, L. W. 2002. Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J. Mol. Biol. 317:249262.
Pang, S. S., Guddat, L. W., and Duggleby, R. G. 2003. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J. Biol. Chem. 278:76397644.
Patzoldt, W. L. and Tranel, P. J. 2007. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Sci. 55:421428.
Rajguru, S. N., Burgos, N. R., Shivrain, V. K., and Stewart, J. McD. 2005. Mutations in the red rice ALS associated with resistance to imazethapyr. Weed Sci. 53:567577.
Sathasivan, K., Haugh, G. W., and Murai, N. 1990. Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Colombia. Nucleic Acids Res. 18:2188.
Schloss, J. V. 1990. Acetolactate synthase, mechanism of action and its herbicide binding site. Pestic. Sci. 29:283290.
Shivrain, V. K. 2004. Phenotypic Characterization and Natural Variation in the ALS Gene of Red Rice. . Fayetteville, AR University of Arkansas. 180.
Steele, G. L., Chandler, J. M., and McCauley, G. N. 2002. Control of red rice (Oryza sativa) in imidazolinone-tolerant rice (O. sativa). Weed Technol. 16:627630.
Stidham, M. A. and Singh, B. K. 1991. Imidazolinone–acetohydroxyacid synthase interactions. Pages 7190. in Shaner, D. L. and O'Connor, S. L. The Imidazolinone Herbicides. Boca Raton, Florida CRC Press.
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned. Weed Sci. 50:700712.
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55:8390.


Related content

Powered by UNSILO

Amino Acid Substitutions in the Acetolactate Synthase Gene of Red Rice (Oryza sativa) Confer Resistance to Imazethapyr

  • Marites A. Sales (a1), Vinod K. Shivrain (a1), Nilda R. Burgos (a1) and Yong I. Kuk (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.