Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T05:26:43.341Z Has data issue: false hasContentIssue false

Amino Acid Substitutions in the Acetolactate Synthase Gene of Red Rice (Oryza sativa) Confer Resistance to Imazethapyr

Published online by Cambridge University Press:  20 January 2017

Marites A. Sales
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Vinod K. Shivrain
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Nilda R. Burgos*
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
Yong I. Kuk
Affiliation:
Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR 72704
*
Corresponding author's E-mail: nburgos@uark.edu.

Abstract

Two red rice accessions from Arkansas have been found to be resistant to the labeled rate of imazethapyr, which is used to control red rice in ClearfieldTM rice. Full-length amplification of the acetolactate synthase (ALS) gene in imazethapyr-resistant red rice revealed a coding sequence of 1,935 base pairs, which is the same as that of the cultivated rice. Coding sequences were generated from four red rice accessions collected from different geographical regions in Arkansas, consisting of accessions that were either resistant or susceptible to imazethapyr. Nucleotide sequence alignments identified six base polymorphisms, three of which resulted in amino acid substitutions in the ALS gene. One amino acid substitution, Gly654Glu, involves a residue required for imazethapyr binding to the ALS. The other substitution, Val669Met, implies conformational changes in the ALS structure that enhances binding of thiamine diphosphate, an ALS cofactor. These novel amino acid substitutions first reported for ALS-resistant red rice accessions support the hypothesis that ALS-resistant red rice can evolve with sustained herbicide selection pressure. Thus, it behooves growers to integrate the Cleafield rice technology with other tools to achieve a successful, long-term weed management program.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Avila, L. A., Lee, D. J., Senseman, S. A., McCauley, G. N., Chandler, J. M., and Cothren, J. T. 2005. Assessment of acetolactate synthase (ALS) tolerance to imazethapyr in red rice ecotypes (Oryza spp.) and imidazolinone tolerant/resistant rice (Oryza sativa) varieties. Pest Manage. Sci. 61:171178.Google Scholar
Bernasconi, P., Woodworth, A. R., Rosen, B. A., Subramanian, M. V., and Siehl, D. L. 1995. A naturally occurring point mutation confers broad range tolerance to herbicides that target acetolactate synthase. J. Biol. Chem. 270:1738117835.CrossRefGoogle ScholarPubMed
Burgos, N. R., Norsworthy, J. K., Scott, R. C., and Smith, K. L. 2008. Red rice status after five years of ClearfieldTM rice. Weed Technol. 22:200208.Google Scholar
Counce, P. A., Keisling, T. C., and Mitchell, A. J. 2000. A uniform, objective, adaptive system for expressing rice development. Crop Sci. 40:436443.Google Scholar
Craigmiles, J. P. 1978. Introduction. Pages 56. in Eastin, E. F. Red Rice Research and Control. College Station, TX Texas Agricultural Experiment Station Bulletin B-1270.Google Scholar
Croughan, T. P., Utomo, H. S., Sanders, D. E., and Braveman, M. P. 1996. Herbicide-resistant rice offers potential solution to red rice problem. LA Agric. 39:1012.Google Scholar
Doyle, J. J. and Doyle, J. L. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:1115.Google Scholar
Gealy, D. R., Tai, T. H., and Sneller, C. H. 2002. Identification of red rice, rice, and hybrid populations using microsatellite markers. Weed Sci. 50:333339.Google Scholar
Griffin, J. L., Baker, J. B., Dunand, R. T., and Sonnier, E. A. 1986. Red rice control in rice and soybeans in southwest Louisiana. Baton Rouge, LA Louisiana State University Agric. Center Publ. 776.Google Scholar
Hattori, J., Rutledge, R., Labbé, H., Brown, D., Sunohara, G., and Miki, B. 1992. Multiple resistance to sulfonylureas and imidazolinones conferred by an acetohydroxyacid synthase gene with separate mutations for selective resistance. Mol. Gen. Genet. 232:167173.Google Scholar
Haughn, G. W. and Sommerville, C. R. 1990. A mutation causing imidazolinone resistance maps to the Csr1 locus of Arabidopsis thaliana . Plant Physiol. 92:10811085.Google Scholar
Hawkes, T. R., Howard, J. L., and Pontin, S. E. 1989. Herbicides that inhibit the biosynthesis of branched chain amino acids. Pages 113136. in Dodge, A. D. Herbicides and Plant Metabolism. Society for Experimental Biology Seminar Series, Volume 38. London Cambridge University Press.Google Scholar
Jander, G., Baerson, S. R., Hudak, J. A., Gonzalez, K. A., Gruys, K. J., and Last, R. L. 2003. Ethylmethanesulfonate saturation mutagenesis in Arabidopsis to determine frequency of herbicide resistance. Plant Physiol. 131:139146.CrossRefGoogle ScholarPubMed
Kim, J., Beak, D. G., Kim, Y. T., Choi, J. D., and Yoon, M. Y. 2004. Effects of deletions at the C-terminus of tobacco acetohydroxyacid synthase on the enzyme activity and cofactor binding. Biochem. J. 384:5968.Google Scholar
Kimura, M. 1983. The Neutral Theory of Molecular Evolution. New York Cambridge University Press. 1367.Google Scholar
Kuk, Y. I., Burgos, N. R., and Shivrain, V. K. 2008. Natural tolerance to imazethapyr in red rice (Oryza sativa). Weed Sci. 56:111.Google Scholar
Levy, J. R. Jr., Bond, J. A., Webster, E. P., Griffin, J. L., Zhang, W. P., and Linscombe, S. D. 2006. Imidazolinone-tolerant rice response to imazethapyr application. Weed Technol. 20:389393.Google Scholar
Mazur, B. J., Chui, C. F., and Smith, J. K. 1987. Isolation and characterization of plant genes coding for acetolactate synthase, the target enzyme for two classes of herbicides. Plant Physiol. 85:11101117.Google Scholar
McCourt, J. A., Pang, S. S., King-Scott, J., Guddat, L. W., and Duggleby, R. G. 2006. Herbicide-binding sites revealed in the structure of plant acetohydroxyacid synthase. Proc. Natl. Acad. Sci. U. S. A. 103:569573.Google Scholar
Norsworthy, J. K., Burgos, N. R., Scott, R. C., and Smith, K. L. 2007. Consultant perspectives on weed management needs in Arkansas rice. Weed Technol. 21:832839.Google Scholar
Ottis, B. V., O'Barr, J. H., McCauley, G. N., and Chandler, J. M. 2004. Imazethapyr is safe and effective for imidazolinone-tolerant rice grown on coarse-textured soils. Weed Technol. 18:10961100.Google Scholar
Pang, S. S., Duggleby, R. G., and Guddat, L. W. 2002. Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors. J. Mol. Biol. 317:249262.Google Scholar
Pang, S. S., Guddat, L. W., and Duggleby, R. G. 2003. Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase. J. Biol. Chem. 278:76397644.CrossRefGoogle ScholarPubMed
Patzoldt, W. L. and Tranel, P. J. 2007. Multiple ALS mutations confer herbicide resistance in waterhemp (Amaranthus tuberculatus). Weed Sci. 55:421428.Google Scholar
Rajguru, S. N., Burgos, N. R., Shivrain, V. K., and Stewart, J. McD. 2005. Mutations in the red rice ALS associated with resistance to imazethapyr. Weed Sci. 53:567577.Google Scholar
Sathasivan, K., Haugh, G. W., and Murai, N. 1990. Nucleotide sequence of a mutant acetolactate synthase gene from an imidazolinone-resistant Arabidopsis thaliana var. Colombia. Nucleic Acids Res. 18:2188.Google Scholar
Schloss, J. V. 1990. Acetolactate synthase, mechanism of action and its herbicide binding site. Pestic. Sci. 29:283290.Google Scholar
Shivrain, V. K. 2004. Phenotypic Characterization and Natural Variation in the ALS Gene of Red Rice. . Fayetteville, AR University of Arkansas. 180.Google Scholar
Steele, G. L., Chandler, J. M., and McCauley, G. N. 2002. Control of red rice (Oryza sativa) in imidazolinone-tolerant rice (O. sativa). Weed Technol. 16:627630.Google Scholar
Stidham, M. A. and Singh, B. K. 1991. Imidazolinone–acetohydroxyacid synthase interactions. Pages 7190. in Shaner, D. L. and O'Connor, S. L. The Imidazolinone Herbicides. Boca Raton, Florida CRC Press.Google Scholar
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned. Weed Sci. 50:700712.Google Scholar
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55:8390.Google Scholar