Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-19T02:52:21.395Z Has data issue: false hasContentIssue false

Advancing Weed Management Strategies Using Metagenomic Techniques

Published online by Cambridge University Press:  20 January 2017

Jenny Kao-Kniffin*
Affiliation:
Department of Horticulture, Cornell University, Ithaca, NY 14853
Sarah M. Carver
Affiliation:
Department of Horticulture, Cornell University, Ithaca, NY 14853
Antonio DiTommaso
Affiliation:
Department of Crop and Soil Sciences, Cornell University, Ithaca, NY. 14853
*
Corresponding author's E-mail: jtk57@cornell.edu
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Global occurrences of herbicide resistant weed populations have increased the demand for development of new herbicides targeting novel mechanisms of action. Metagenomic approaches to natural drug discovery offer potential for isolating weed suppressive compounds from microorganisms. In past research, traditional techniques entailed isolating compounds from living organisms, whereas metagenomic approaches involve extracting fragments of DNA from soil and exploring for compounds of interest produced by the transformed hosts. Several herbicidal compounds have been isolated from soil bacteria through culturing methods and have led to the development of popular herbicides, such as glufosinate. In this review, we discuss the emergence of metagenomic approaches for weed management in the context of natural product discovery using traditional culture-dependent isolation and the more recent culture-independent methods. The same techniques can be used to isolate herbicide resistance genes. Adoption of metagenomic approaches in pest management research can lead to novel control strategies in cropping and landscape systems.

Type
Review
Creative Commons
Creative Common License - CCCreative Common License - BY
This is an Open Access article, distributed under the terms of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Copyright
Copyright © Weed Science Society of America

References

Literature Cited

Arakane, Y., Hogenkamp, D. G., Zhu, Y. C., Kramer, K. J., Specht, C. A., Beeman, R. W., Kanost, M. R., and Muthukrishnan, S. 2004. Characterization of two chitin synthase genes of the red flour beetle, Tribolium castaneum, and alternate exon usage in one of the genes during development. Insect Biochem. Mol. Biol. 34: 291304.Google Scholar
Armstrong, D., Azevedo, M., Mills, D., Bailey, B., Russell, B., Groenig, A., Halgren, A., Banowetz, G., and McPhail, K. 2009. Germination-Arrest Factor (GAF): 3. Determination that the herbicidal activity of GAF is associated with a ninhydrin-reactive compound and counteracted by selected amino acids. Biol. Control 51: 181190.Google Scholar
Arya, N. 2005. Pesticides and Human Health. Can. J. Public Health-Rev. Can. Sante Publique 96: 8992.Google Scholar
[ASTM] American Society for Testing and Materials. 2009. Standard guide for conducting terrestrial plant toxicity tests. West Conshohocken, PA, E1963-09, 21 p.Google Scholar
Astua-Monge, G., Minsavage, G. V., Stall, R. E., Davis, M. J., Bonas, U., and Jones, J. B. 2000. Resistance of tomato and pepper to T3 strains of Xanthomonas campestris pv. vesicatoria is specified by a plant-inducible. Mol. Plant–Microbe Interact. 13: 911921.Google Scholar
Auld, B. A. and Morin, L. 1995. Constraints in the development of bioherbicides. Weed Technol. 9: 638652.Google Scholar
Baltz, R. H. 2006. Marcel Faber Roundtable: is our antibiotic pipeline unproductive because of starvation, constipation or lack of inspiration? J. Ind. Microbiol. Biotechnol. 33: 507513.Google Scholar
Banowetz, G. M., Azevedo, M. D., Armstrong, D. J., Halgren, A. B., and Mills, D. I. 2008. Germination-arrest factor (GAF): biological properties of a novel, naturally-occurring herbicide produced by selected isolates of rhizosphere bacteria. Biol. Control 46: 380390.Google Scholar
Barazani, O. and Friedman, J. 2001. Allelopathic bacteria and their impact on higher plants. Crit. Rev. Microbiol. 27: 4155.Google Scholar
Barton, J. 2005. Bioherbicides: All in a Days Work for a Superhero. In: What's New in Biological Control of Weeds? Manaaki Whenua Landcare Research, New Zealand Ltd., Auckland, New Zealand. 8 p.Google Scholar
Baudoin, A., Abad, R. G., Kok, L. T., and Bruckart, W. L. 1993. Field-evaluation of Puccinia carduorum for biological control of musk thistle. Biol. Control 3: 5360.Google Scholar
Bell, K. S., Avrova, A. O., Holeva, M. C., Cardle, L., Morris, W., De Jong, W., Toth, I. K., Waugh, R., Bryan, G. J., and Birch, P. R. J. 2002. Sample sequencing of a selected region of the genome of Erwinia carotovora subsp. atroseptica reveals candidate phytopathogenicity genes and allows comparison with Escherichia coli . Microbiol.-SGM 148: 13671378.Google Scholar
Beloqui, A., Nechitaylo, T. Y., Lopez-Cortes, N., Ghazi, A., Guazzaroni, M-E., Polaina, J., Strittmatter, A. W., Reva, O., Waliczek, A., Yakimov, M. M., Golyshina, O. V., Ferrer, M., and Golyshin, P. N. 2010. Diversity of glycosyl hydrolases from cellulose-depleting communities enriched from casts of two earthworm species. Appl. Environ. Microbiol. 76: 59345946.Google Scholar
Blodgett, J.A.V., Zhang, J. K., and Metcalf, W. W. 2005. Molecular cloning, sequence analysis, and heterologous expression of the phosphinothricin tripeptide biosynthetic gene cluster from Streptomyces viridochromogenes DSM 40736. Antimicrob. Agents Chemother. 49: 230240.Google Scholar
Boyetchko, S. M. 1997. Principles of biological weed control with microorganisms. HortScience 32: 201205.Google Scholar
Brady, S. F. 2007. Construction of soil environmental DNA cosmid libraries and screening for clones that produce biologically active small molecules. Nat. Protoc. 2: 12971305.Google Scholar
Brady, S. F., Chao, C. J., Handelsman, J., and Clardy, J. 2001. Cloning and heterologous expression of a natural product biosynthetic gene cluster from eDNA. Org. Lett. 3: 19811984.Google Scholar
Brady, S. F., Chao, C. J., and Clardy, J. 2002. New natural product families from an environmental DNA (eDNA) gene cluster. J. Am. Chem. Soc. 124: 99689969.Google Scholar
Brady, S. F. and Clardy, J. 2000. Long-chain N-acyl amino acid antibiotics isolated from heterologously expressed environmental DNA. J. Am. Chem. Soc. 122: 1290312904.Google Scholar
Brady, S. F. and Clardy, J. 2003. Synthesis of long-chain fatty acid enol esters isolated from an environmental DNA clone. Org. Lett. 5: 121124.Google Scholar
Brady, S. F. and Clardy, J. 2004. Palmitoylputrescine, an antibiotic isolated from the heterologous expression of DNA extracted from bromeliad tank water. J. Nat. Prod. 67: 12831286.Google Scholar
Brady, S. F. and Clardy, J. 2005a. Cloning and heterologous expression of isocyanide biosynthetic genes from environmental DNA. Angew. Chem. Int. Ed. 44: 70637065.Google Scholar
Brady, S. F. and Clardy, J. 2005b. Systematic investigation of the Escherichia coli metabolome for the biosynthetic origin of an isocyanide carbon atom. Angew. Chem. Int. Ed. 44: 70457048.Google Scholar
Courtois, S., Cappellano, C. M., Ball, M., Francou, F. X., Normand, P., Helynck, G., Martinez, A., Kolvek, S. J., Hopke, J., Osburne, M. S., August, P. R., Nalin, R., Guerineau, M., Jeannin, P., Simonet, P., and Pernodet, J. L. 2003. Recombinant environmental libraries provide access to microbial diversity for drug discovery from natural products. Appl. Environ. Microbiol. 69: 4955.Google Scholar
Courtois, S., Frostegard, A., Goransson, P., Depret, G., Jeannin, P., and Simonet, P. 2001. Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ. Microbiol. 3: 431439.Google Scholar
Craig, J. W., Chang, F-Y., and Brady, S. F. 2009. Natural products from environmental DNA hosted in Ralstonia metallidurans . ACS Chem. Biol. 4: 2328.Google Scholar
Craig, J. W., Chang, F-Y., Kim, J. H., Obiajulu, S. C., and Brady, S. F. 2010. Expanding small-molecule functional metagenomics through parallel screening of broad-host-range cosmid environmental DNA libraries in diverse Proteobacteria . Appl. Environ. Microbiol. 76: 16331641.Google Scholar
Culliney, T. W. 2005. Benefits of classical biological control for managing invasive plants. Crit. Rev. Plant Sci. 24: 131150.Google Scholar
Cutler, H. G. 1988. Perspectives on discovery of microbial phytotoxins with herbicidal activity. Weed Technol. 2: 525532.Google Scholar
Daigle, D. J., Connick, W. J., and Boyetchko, S. M. 2002. Formulating a weed–suppressive bacterium in “Pesta”. Weed Technol. 16: 407413.Google Scholar
Dawlaty, J., Zhang, X., Fischbach, M. A., and Clardy, J. 2010. Dapdiamides, tripeptide antibiotics formed by unconventional amide ligases. J. Nat. Prod. 73: 441446.Google Scholar
Delmont, T. O., Robe, P., Clark, I., Simonet, P., and Vogel, T. M. 2011. Metagenomic comparison of direct and indirect soil DNA extraction approaches. J. Microbiol. Methods 86: 397400.Google Scholar
Denef, V. J., Mueller, R. S., and Banfield, J. F. 2010. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J. 4: 599610.Google Scholar
Donadio, S., Monciardini, P., and Sosio, M. 2007. Polyketide synthases and nonribosomal peptide synthetases: the emerging view from bacterial genomics. Nat. Prod. Rep. 24: 10731109.Google Scholar
Donato, J. J., Moe, L. A., Converse, B. J., Smart, K. D., Berklein, F. C., McManus, P. S., and Handelsman, J. 2010. Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Appl. Environ. Microbiol. 76: 43964401.Google Scholar
Duan, C. J., Xian, L., Zhao, G. C., Feng, Y., Pang, H., Bai, X. L., Tang, J. L., Ma, Q. S., and Feng, J. X. 2009. Isolation and partial characterization of novel genes encoding acidic cellulases from metagenomes of buffalo rumens. J. Appl. Microbiol. 107: 245256.Google Scholar
Duke, S. O. 2012. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 68: 505512.Google Scholar
Duke, S. O., Dayan, F. E., Romagni, J. G., and Rimando, A. M. 2000. Natural products as sources of herbicides: current status and future trends. Weed Res. 40: 99111.Google Scholar
Dunn, A. K., Klimowicz, A. K., and Handelsman, J. 2003. Use of a promoter trap to identify Bacillus cereus genes regulated by tomato seed exudate and a rhizosphere resident, Pseudomonas aureofaciens . Appl. Environ. Microbiol. 69: 11971205.Google Scholar
Einhorn, G. and Brandau, J. 2006. Influence of microorganisms on weed and crop seeds? J. Plant Dis. Prot. 20: 317324.Google Scholar
Ekkers, D. M., Cretoiu, M. S., Kielak, A. M., and van Elsas, J. D. 2012. The great screen anomaly-a new frontier in product discovery through functional metagenomics. Appl. Microbiol. Biotechnol. 93: 10051020.Google Scholar
[EPA] U.S. Environmental Protection Agency. 2012. Aquatic plant toxicity test using Lemna spp. Washington DC: U.S. Environmental Protection Agency, OCSPP 850.4400, EPA Report no. 712-C-008. 22 p.Google Scholar
Fairchild, J. F., Ruessler, D. S., Haverland, P. S., and Carlson, A. R. 1997. Comparative sensitivity of Selenastrum capricornutum and Lemna minor to sixteen herbicides. Arch. Environ. Contam. Toxicol. 32: 353357.Google Scholar
Feng, Z., Chakraborty, D., Dewell, S. B., Reddy, B. V. B., and Brady, S. F. 2012. Environmental DNA-encoded antibiotics fasamycins A and B inhibit FabF in type II fatty acid biosynthesis. J. Am. Chem. Soc. 134: 29812987.Google Scholar
Gabor, E. M., de Vries, E. J., and Janssen, D. B. 2003. Efficient recovery of environmental DNA for expression cloning by indirect extraction methods. FEMS Microbiol. Ecol. 44: 153163.Google Scholar
Gans, J., Wolinsky, M., and Dunbar, J. 2005. Computational improvements reveal great bacterial diversity and high metal toxicity in soil. Science 309: 13871390.Google Scholar
Gillespie, D. E., Brady, S. F., Bettermann, A. D., Cianciotto, N. P., Liles, M. R., Rondon, M. R., Clardy, J., Goodman, R. M., and Handelsman, J. 2002. Isolation of antibiotics turbomycin A and B from a metagenomic library of soil microbial DNA. Appl. Environ. Microbiol. 68: 43014306.Google Scholar
Ginolhac, A., Jarrin, C., Gillet, B., Robe, P., Pujic, P., Tuphile, K., Bertrand, H., Vogel, T. M., Perriere, G., Simonet, P., and Nalin, R. 2004. Phylogenetic analysis of polyketide synthase I domains from soil metagenomic libraries allows selection of promising clones. Appl. Environ. Microbiol. 70: 55225527.Google Scholar
Ginolhac, A., Jarrin, C., Robe, P., Perriere, G., Vogel, T., Simonet, P., and Nalin, R. 2005. Type I polyketide synthases may have evolved through horizontal gene transfer. J. Mol. Evol. 60: 716725.Google Scholar
Guan, C., Ju, J., Borlee, B. R., Williamson, L. L., Shen, B., Raffa, K. F., and Handelsman, J. 2007. Signal mimics derived from a metagenomic analysis of the gypsy moth gut microbiota. Appl. Environ. Microbiol. 73: 36693676.Google Scholar
Haichar, F. E. Z., Marol, C., Berge, O., Rangel-Castro, J. I., Prosser, J. I., Balesdent, J., Heulin, T., and Achouak, W. 2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME J. 2: 12211230.Google Scholar
Hallett, S. G. 2005. Where are the bioherbicides? Weed Sci. 53: 404415.Google Scholar
Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669685.Google Scholar
Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. 1998. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5: R245R249.Google Scholar
Hao, Y. A., Winans, S. C., Glick, B. R., and Charles, T. C. 2010. Identification and characterization of new LuxR/LuxI-type quorum sensing systems from metagenomic libraries. Environ. Microbiol. 12: 105117.Google Scholar
Heap, I. 2012. International Survey of Herbicide Resistant Weeds. http://www.weedscience.org/In.asp. Accessed May 22, 2012.Google Scholar
Heath, C., Hu, X. P., Cary, S. C., and Cowan, D. 2009. Identification of a novel alkaliphilic esterase active at low temperatures by screening a metagenomic library from Antarctic desert soil. Appl. Environ. Microbiol. 75: 46574659.Google Scholar
Heisey, R. M. and Putnam, A. R. 1990. Herbicidal activity of the antibiotics geldanamycin and nigericin. J. Plant Growth Regul. 9: 1925.Google Scholar
Hillis, D. G., Fletcher, J., Solomon, K. R., and Sibley, P. K. 2011. Effects of ten antibiotics on seed germination and root elongation in three plant species. Arch. Environ. Contam. Toxicol. 60: 220232.Google Scholar
Hjort, K., Bergstrom, M., Adesina, M. F., Jansson, J. K., Smalla, K., and Sjoling, S. 2010. Chitinase genes revealed and compared in bacterial isolates, DNA extracts and a metagenomic library from a phytopathogen-suppressive soil. FEMS Microbiol. Ecol. 71: 197207.Google Scholar
Hoerlein, G. 1994. Glufosinate (phosphinothricin), a natural amino-acid with unexpected herbicidal properties. Rev. Environ. Contam. Toxicol. 138: 73145.Google Scholar
Holben, W. E. 2011. GC fractionation allows comparative total microbial community analysis, enhances diversity assessment, and facilitates detection of minority populations of bacteria. Pp. 183196 in de Bruijn, F. J., ed. Handbook of Molecular Microbial Ecology I: Metagenomics and Complementary Approaches. Hoboken, NJ: Wiley.Google Scholar
Holben, W. E., Jansson, J. K., Chelm, B. K., and Tiedje, J. M. 1988. DNA probe method for the detection of specific microorganisms in the soil bacterial community. Appl. Environ. Microbiol. 54: 703711.Google Scholar
Hu, J., Okawa, H., Yamamoto, K., Oyama, K., Mitomi, M., and Anzai, H. 2011. Characterization of two cytochrome P450 monooxygenase genes of the pyripyropene biosynthetic gene cluster from Penicillium coprobium . J. Antibiot. 64: 221227.Google Scholar
Hugenholtz, P. and Tyson, G. W. 2008. Microbiology: metagenomics. Nat. 455: 481483.Google Scholar
[ISO] International Organization of Standardization. 2005a. Soil Quality – Determination of the effects of pollutants on soil flora –Seedling test for emergence of lettuce seedlings (Lactuca sativa L.). Geneva, Switzerland, no. 17126,7 p.Google Scholar
[ISO] International Organization of Standardization. 2005b. Water quality—Determination of the toxic effect of water constituents and waste water on duckweed (Lemna minor)—Duckweed growth inhibition test. Geneva, Switzerland, no. 20079, 23 p.Google Scholar
[ISO] International Organization of Standardization. 2012a. Soil Quality – Determination of the effects of pollutants on soil flora – Part 1: Method for the Measurement of Inhibition of Root Growth. Geneva, Switzerland, no. 11269-1, 16 p.Google Scholar
[ISO] International Organization of Standardization. 2012b. Soil Quality – Determination of the effects of pollutants on soil flora – Part 2: Effects of contaminated soil on the emergence and early growth on higher plants. Geneva, Switzerland, no. 11269-2, 19 p.Google Scholar
[ISO] International Organization of Standardization. 2012c. Water quality—Freshwater algal growth inhibition test with unicellular green algae. Geneva, Switzerland, no. 8692, 21 p.Google Scholar
Ito, K., Tanaka, T., Hatta, R., Yamamoto, M., Akimitsu, K., and Tsuge, T. 2004. Dissection of the host range of the fungal plant pathogen Alternaria alternata by modification of secondary metabolism. Mol. Microbiol. 52: 399411.Google Scholar
Jiang, H-S., Li, M., Chang, F - Y., Li, W., and Yin, L - Y. 2012. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza . Environ. Toxicol. Chem. 8: 18801886.Google Scholar
Jin, D., Lu, W., Ping, S., Zhang, W., Chen, J., Dun, B., Ma, R., Zhao, Z., Sha, J., Li, L., Yang, Z., Chen, M., and Lin, M. 2007. Identification of a new gene encoding EPSPS with high glyphosate resistance from the metagenomic library. Curr. Microbiol. 55: 350355.Google Scholar
Kämpfer, P. and Glaeser, S. P. 2012. Prokaryotic taxonomy in the sequencing era — the polyphasic approach revisited. Environ. Microbiol. 14: 291317.Google Scholar
Katzen, F. 2007. Gateway (R) recombinational cloning: a biological operating system. Expert Opin. Drug Discov. 2: 571589.Google Scholar
Kennedy, A. C., Elliott, L. F., Young, F. L., and Douglas, C. L. 1991. Rhizobacteria suppressive to the weed downy brome. Soil Sci. Soc. Am. J. 55: 722727.Google Scholar
Kennedy, A. C. and Stubbs, T. L. 2007. Management effects on the incidence of jointed goatgrass inhibitory rhizobacteria. Biol. Control 40: 213221.Google Scholar
Kremer, R. J. 1993. Management of weed seed banks with microorganisms. Ecol. Appl. 3: 4252.Google Scholar
Kremer, R. J. and Kennedy, A. C. 1996. Rhizobacteria as biocontrol agents of weeds. Weed Technol. 10: 601609.Google Scholar
Kremer, R. J. and Souissi, T. 2001. Cyanide production by rhizobacteria and potential for suppression of weed seedling growth. Curr. Microbiol. 43: 182186.Google Scholar
Lee, H. B., Kim, C. J., Kim, J. S., Hong, K. S., and Cho, K. Y. 2003. A bleaching herbicidal activity of methoxyhygromycin (MHM) produced by an actinomycete strain Streptomyces sp. 8E-12. Lett. Appl. Microbiol. 36: 387391.Google Scholar
Lee, S. H., Kim, J. M., Lee, H. J., and Jeon, C. O. 2011. Screening of promoters from rhizosphere metagenomic DNA using a promoter-trap vector and flow cytometric cell sorting. J. Basic Microbiol. 51: 5260.Google Scholar
Li, J. W. H. and Vederas, J. C. 2009. Drug discovery and natural products: end of an era or an endless frontier? Science 325: 161165.Google Scholar
Liefting, L. W. and Kirkpatrick, B. C. 2003. Cosmid cloning and sample sequencing of the genome of the uncultivable mollicute, Western X-disease phytoplasma, using DNA purified by pulsed-field gel electrophoresis. FEMS Microbiol. Lett. 221: 203211.Google Scholar
Link, A. J., Jeong, K. J., and Georgiou, G. 2007. Beyond toothpicks: new methods for isolating mutant bacteria. Nat. Rev. Microbiol. 5: 680688.Google Scholar
Linning, R., Lin, D., Lee, N., Abdennadher, M., Gaudet, D., Thomas, P., Mills, D., Kronstad, J. W., and Bakkeren, G. 2004. Marker-based cloning of the region containing the UhAvr1 avirulence gene from the basidiomycete barley pathogen Ustilago hordei . Genet. 166: 99111.Google Scholar
Liu, F., Ying, G-G., Tao, R., Zhao, J-L., Yang, J-F., and Zhao, L-F. 2009. Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities. Environ. Pollution 157: 16361642.Google Scholar
Louda, S. M., Pemberton, R. W., Johnson, M. T., and Follett, P. A. 2003. Nontarget effects — the Achilles' heel of biological control?: retrospective analyses to reduce risk associated with biocontrol introductions. Ann. Rev. Entomol. 48: 365396.Google Scholar
Lydon, J., Kong, H., Murphy, C., and Zhang, W. 2011. The biology and biological activity of Pseudomonas syringae pv. tagetis . Pest Technol. 5: 4855.Google Scholar
Lucas, J. A. 2011. Advances in plant disease and pest management. J Agricul. Sci. 149: 91114.Google Scholar
Ma, J., Xu, L., and Wang, S. 2002. A quick, simple, and accurate method of screening herbicide activity using green algae cell suspension cultures. Weed Sci. 50: 555559.Google Scholar
MacNeil, I. A., Tiong, C. L., Minor, C., August, P. R., Grossman, T. H., Loiacono, K. A., Lynch, B. A., Phillips, T., Narula, S., Sundaramoorthi, R., Tyler, A., Aldredge, T., Long, H., Gilman, M., Holt, D., and Osburne, M. S. 2001. Expression and isolation of antimicrobial small molecules from soil DNA libraries. J. Mol. Microbiol. Biotechnol. 3: 301308.Google Scholar
Mamanova, L., Coffey, A. J., Scott, C. E., Kozarewa, I., Turner, E. H., Kumar, A., Howard, E., Shendure, J., and Turner, D. J. 2010. Target-enrichment strategies for next-generation sequencing. Nat. Methods 7: 111118.Google Scholar
Maruyama, T., Ishikura, M., Taki, H., Shindo, K., Kasai, H., Haga, M., Inomata, Y., and Misawa, N. 2005. Isolation and characterization of o-xylene oxygenase genes from Rhodococcus opacus TKN14. Appl. Environ. Microbiol. 71: 77057715.Google Scholar
Mary, I., Oliver, A., Skipp, P., Holland, R., Topping, J., Tarran, G., Scanlan, D. J., O'Connor, C. D., Whiteley, A. S., Burkill, P. H., and Zubkov, M. V. 2010. Metaproteomic and metagenomic analyses of defined oceanic microbial populations using microwave cell fixation and flow cytometric sorting. FEMS Microbiol. Ecol. 74: 1018.Google Scholar
McMahon, M. D., Guan, C., Handelsman, J., and Thomas, M. G. 2012. Metagenomic analysis of Streptomyces lividans reveals host-dependent functional expression. Appl. Environ. Microbiol. 78: 36223629.Google Scholar
Medd, R. W. and Campbell, M. A. 2005. Grass seed infection following inundation with Pyrenophora semeniperda . Biocontrol Sci. Technol. 15: 2136.Google Scholar
Metzker, M. L. 2010. Sequencing technologies — the next generation. Nat. Rev. Genet. 11: 3146.Google Scholar
Mewis, K., Taupp, M., and Hallam, S. J. 2011. A high throughput screen for biomining cellulase activity from metagenomic libraries. J. Vis. Exp. 48: 10.3791/2461.Google Scholar
Meyerdierks, A., Kube, M., Kostadinov, I., Teeling, H., Gloeckner, F. O., Reinhardt, R., and Amann, R. 2010. Metagenome and mRNA expression analyses of anaerobic methanotrophic archaea of the ANME-1 group. Environ. Microbiol. 12: 422439.Google Scholar
Miller, A. A. and Miller, P. F. 2011. Answering the call to arms: introduction and overview. Pp. 320 in Miller, A. A. and Miller, P. F., eds. Emerging Trends in Antibacterial Discovery: Answering the Call to Arms. Norwich: Caister Academic.Google Scholar
Miller, J. R., Dunham, S., Mochalkin, I., Banotai, C., Bowman, M., Buist, S., Dunkle, B., Hanna, D., Harwood, H. J., Huband, M. D., Karnovsky, A., Kuhn, M., Limberakis, C., Liu, J. Y., Mehrens, S., Mueller, W. T., Narasimhan, L., Ogden, A., Ohren, J., Prasad, J. V. N. V., Shelly, J. A., Skerlos, L., Sulavik, M., Thomas, V. H., VanderRoest, S., Wang, L., Wang, Z., Whitton, A., Zhu, T., and Stover, C. K. 2009. A class of selective antibacterials derived from a protein kinase inhibitor pharmacophore. Proc. Natl. Acad. Sci. U.S.A. 106: 17371742.Google Scholar
Mohammad, M., Kishimoto, T., Itoh, K., Suyama, K., and Tamamoto, H. 2005. Comparative sensitivity of Pseudokirchneriella subcapitata vs. Lemna sp. to eight sulfonylurea herbicides. Bull. Environ. Contam. Toxicol. 75: 866872.Google Scholar
Monier, J-M., Demaneche, S., Delmont, T. O., Mathieu, A., Vogel, T. M., and Simonet, P. 2011. Metagenomic exploration of antibiotic resistance in soil. Curr. Opin. Microbiol. 14: 229235.Google Scholar
Montesinos, E. and Bardaji, E. 2008. Synthetic antimicrobial peptides as agricultural pesticides for plant-disease control. Chem. Biodiv. 5: 12251237.Google Scholar
Morgan, J. A. W., Sergeant, M., Ellis, D., Ousley, M., and Jarrett, P. 2001. Sequence analysis of insecticidal genes from Xenorhabdus nematophilus PMFI296. Appl. Environ. Microbiol. 67: 20622069.Google Scholar
Mortensen, D. A., Egan, J. F., Maxwell, B. D., Ryan, M. R., and Smith, R. G. 2012. Navigating a critical juncture for sustainable weed management. Bioscience 62: 7584.Google Scholar
Nakajima, M., Itoi, K., Takamatsu, Y., Kinoshita, T., Okazaki, T., Kawakubo, K., Shindo, M., Honma, T., Tohjigamori, M., and Haneishi, T. 1991. Hydantocidin — a new compound with herbicidal activity from Streptomyces hygroscopicus . J. Antibiot. 44: 293300.Google Scholar
Newman, D. J. and Cragg, G. M. 2007. Natural products as sources of new drugs over the last 25 years. J. Nat. Prod. 70: 461477.Google Scholar
Ochiai, H., Inoue, Y., Hasebe, A., and Kaku, H. 2001. Construction and characterization of a Xanthomonas oryzae pv. oryzae bacterial artificial chromosome library. FEMS Microbiol. Lett. 200: 5965.Google Scholar
[OECD] Organization for Economic Cooperation and Development. 1984. OECD guidance for testing of chemicals: Terrestrial plants growth test. Paris, France, no. 208, 21 p.Google Scholar
[OECD] Organization for Economic Cooperation and Development. 2011. OECD Guidelines for the testing of chemicals: Freshwater alga and cyanobacteria, growth inhibition test. Paris, France, no. 201, 25 p.Google Scholar
Ogram, A., Sayler, G. S., and Barkay, T. 1987. The extraction and purification of microbial DNA from sediments. J. Microbiol. Methods 7: 5766.Google Scholar
Overbye, K. M. and Barrett, J. F. 2005. Antibiotics: where did we go wrong. Drug Discov. Today 10: 4552.Google Scholar
Pareek, C. S., Smoczynski, R., and Tretyn, A. 2011. Sequencing technologies and genome sequencing. J. Appl. Genet. 52: 413435.Google Scholar
Pernthaler, A., Dekas, A. E., Brown, C. T., Goffredi, S. K., Embaye, T., and Orphan, V. J. 2008. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics. Proc. Natl. Acad. Sci. U.S.A. 105: 70527057.Google Scholar
Pralle, S. B. 2006. Timing and sequence in agenda-setting and policy change: a comparative study of lawn care pesticide politics in Canada and the US. J. Eur. Public Policy 13: 9871005.Google Scholar
Ray, S. K., Rajeshwari, R., and Sonti, R. V. 2000. Mutants of Xanthomonas oryzae pv. oryzae deficient in general secretory pathway are virulence deficient and unable to secrete xylanase. Mol. Plant–Microbe Interact. 13: 394401.Google Scholar
Rector, B. G. 2008. Molecular biology approaches to control of intractable weeds: new strategies and complements to existing biological practices. Plant Sci. 175: 437448.Google Scholar
Rodriguez-Segura, Z., Chen, J., Villalobos, F. J., Gill, S., and Nunez-Valdez, M. E. 2012. The lipopolysaccharide biosynthesis core of the Mexican pathogenic strain Serratia entomophila is associated with toxicity to larvae of Phyllophaga blanchardi . J. Invertebr. Pathol. 110: 2432.Google Scholar
Romero, M., Martin-Cuadrado, A-B., Roca-Rivada, A., Cabello, A. M., and Otero, A. 2011. Quorum quenching in cultivable bacteria from dense marine coastal microbial communities. FEMS Microbiol. Ecol. 75: 205217.Google Scholar
Rondon, M. R., August, P. R., Bettermann, A. D., Brady, S. F., Grossman, T. H., Liles, M. R., Loiacono, K. A., Lynch, B. A., MacNeil, I. A., Minor, C., Tiong, C. L., Gilman, M., Osburne, M. S., Clardy, J., Handelsman, J., and Goodman, R. M. 2000. Cloning the soil metagenome: a strategy for accessing the genetic and functional diversity of uncultured microorganisms. Appl. Environ. Microbiol. 66: 25412547.Google Scholar
Sauerborn, J., Mueller-Stoever, D., and Hershenhorn, J. 2007. The role of biological control in managing parasitic weeds. Crop Prot. 26: 246254.Google Scholar
Scacchi, A., Bortolo, R., Cassani, G., Pirali, G., and Nielsen, E. 1992. Detection, characterization, and phytotoxic activity of the nucleoside antibiotics, blasticidin-S and 5-hydroxylmethyl-blasticidin-S. J. Plant Growth Regul. 11: 3946.Google Scholar
Schloss, P. D. and Handelsman, J. 2003. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 14: 303310.Google Scholar
Schloss, P. D. and Handelsman, J. 2006. Toward a census of bacteria in soil. PLoS Comput. Biol. 2: 786793.Google Scholar
Schmieder, R. and Edwards, R. 2012. Insights into antibiotic resistance through metagenomic approaches. Future Microbiol. 7: 7389.Google Scholar
Scholz, M. B., Lo, C-C., and Chain, P. S. G. 2012. Next generation sequencing and bioinformatic bottlenecks: the current state of metagenomic data analysis. Curr. Opin. Biotechnol. 23: 915.Google Scholar
Serino, M., Chabo, C., and Burcelin, R. 2012. Intestinal microbiOMICS to define health and disease in human and mice. Curr. Pharm. Biotechnol. 13: 746758.Google Scholar
Shan, W. X. and Hardham, A. R. 2004. Construction of a bacterial artificial chromosome library, determination of genome size, and characterization of an Hsp70 gene family in Phytophthora nicotianae . Fungal Genet. Biol. 41: 369380.Google Scholar
Shi, Y., Tyson, G. W., Eppley, J. M., and DeLong, E. F. 2011. Integrated metatranscriptomic and metagenomic analyses of stratified microbial assemblages in the open ocean. ISME J. 5: 9991013.Google Scholar
Simon, C., Herath, J., Rockstroh, S., and Daniel, R. 2009. Rapid identification of genes encoding DNA polymerases by function-based screening of metagenomic libraries derived from glacial ice. Appl. Environ. Microbiol. 75: 29642968.Google Scholar
Singh, K. M., Ahir, V. B., Tripathi, A. K., Ramani, U. V., Sajnani, M., Koringa, P. G., Jakhesara, S., Pandya, P. R., Rank, D. N., Murty, D. S., Kothari, R. K., and Joshi, C. G. 2012. Metagenomic analysis of surti buffalo (Bubalus bubalis) rumen: a preliminary study. Mol. Biol. Rep. 39: 48414848.Google Scholar
Sleator, R. D. 2011. Phylogenetics. Arch. Microbiol. 193: 235239.Google Scholar
Staub, J. M., Brand, L., Tran, M., Kong, Y., and Rogers, S. G. 2012. Bacterial glyphosate resistance conferred by overexpression of an E. coli membrane efflux transporter. J. Ind. Microbiol. Biotechnol. 39: 641647.Google Scholar
Stokke, R., Roalkvam, I., Lanzen, A., Haflidason, H., and Steen, I. H. 2012. Integrated metagenomic and metaproteomic analyses of an ANME-1 dominated community in marine cold seep sediments. Environ. Microbiol. 14: 13331346.Google Scholar
Strange, R. N. 2007. Phytotoxins produced by microbial plant pathogens. Nat. Prod. Rep. 24: 127144.Google Scholar
Suenaga, H. 2012. Targeted metagenomics: a high-resolution metagenomics approach for specific gene clusters in complex microbial communities. Environ. Microbiol. 14: 1322.Google Scholar
Suenaga, H., Ohnuki, T., and Miyazaki, K. 2007. Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ. Microbiol. 9: 22892297.Google Scholar
Sun, Y. C., Chen, Y. C., Tian, Z. X., Li, F. M., Wang, X. Y., Zhang, J., Xiao, Z. L., Lin, M., Gilmartin, N., Dowling, D. N., and Wang, Y. P. 2005. Novel AroA with high tolerance to glyphosate, encoded by a gene of Pseudomonas putida 4G-1 isolated from an extremely polluted environment in China. Appl. Environ. Microbiol. 71: 47714776.Google Scholar
Sutherland, T. D., Horne, I., Russell, R. J., and Oakeshott, J. G. 2002. Gene cloning and molecular characterization of a two-enzyme system catalyzing the oxidative detoxification of β-endosulfan. Appl. Environ. Microbiol. 68: 62376245.Google Scholar
Tikhonovich, I. A. and Provorov, N. A. 2011. Microbiology is the basis of sustainable agriculture: an opinion. Annals Appl. Biol. 159: 155168.Google Scholar
Uchiyama, T., Abe, T., Ikemura, T., and Watanabe, K. 2005. Substrate-induced gene-expression screening of environmental metagenome libraries for isolation of catabolic genes. Nat. Biotechnol. 23: 8893.Google Scholar
Uchiyama, T. and Miyazaki, K. 2010. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Appl. Environ. Microbiol. 76: 70297035.Google Scholar
van Dijk, K., Tam, V. C., Records, A. R., Petnicki-Ocwieja, T., and Alfano, J. R. 2002. The ShcA protein is a molecular chaperone that assists in the secretion of the HopPsyA effector from the type III (Hrp) protein secretion system of Pseudomonas syringae . Mol. Microbiol. 44: 14691481.Google Scholar
van Elsas, J. D., Costal, R., Jansson, J., Sjoling, S., Bailey, M., Nalin, R., Vogel, T. M., and van Overbeek, L. 2008a. The metagenomics of disease-suppressive soils — experiences from the METACONTROL project. Trends Biotechnol. 26: 591601.Google Scholar
van Elsas, J. D., Speksnijder, A., and van Overbeek, L. S. 2008b. A procedure for the metagenomics exploration of disease-suppressive soils. J. Microbiol. Methods 75: 515522.Google Scholar
Wang, G. Y. S., Graziani, E., Waters, B., Pan, W. B., Li, X., McDermott, J., Meurer, G., Saxena, G., Andersen, R. J., and Davies, J. 2000. Novel natural products from soil DNA libraries in a streptomycete host. Org. Lett. 2: 24012404.Google Scholar
Wang, J., Soisson, S. M., Young, K., Shoop, W., Kodali, S., Galgoci, A., Painter, R., Parthasarathy, G., Tang, Y. S., Cummings, R., Ha, S., Dorso, K., Motyl, M., Jayasuriya, H., Ondeyka, J., Herath, K., Zhang, C. W., Hernandez, L., Allocco, J., Basilio, A., Tormo, J. R., Genilloud, O., Vicente, F., Pelaez, F., Colwell, L., Lee, S. H., Michael, B., Felcetto, T., Gill, C., Silver, L. L., Hermes, J. D., Bartizal, K., Barrett, J., Schmatz, D., Becker, J. W., Cully, D., and Singh, S. B. 2006. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature 441: 358361.Google Scholar
Wang, Z., Gerstein, M., and Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10: 5763.Google Scholar
Watve, M. G., Tickoo, R., Jog, M. M., and Bhole, B. D. 2001. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176: 386390.Google Scholar
Weissmann, R., Uggla, C., and Gerhardson, B. 2003. Field performance of a weed-suppressing Serratia plymuthica strain applied with conventional spraying equipment. Biocontrol 48: 725742.Google Scholar
Wenzel, S. C. and Müller, R. 2005. Recent developments towards the heterologous expression of complex bacterial natural product biosynthetic pathways. Curr. Opin. Biotechnol. 16: 594606.Google Scholar
Whisson, S. C., van der Lee, T., Bryan, G. J., Waugh, R., Govers, F., and Birch, P. R. J. 2001. Physical mapping across an avirulence locus of Phytophthora infestans using a highly representative, large-insert bacterial artificial chromosome library. Mol. Genet. Genomics 266: 289295.Google Scholar
Win, J., Greenwood, D. R., and Plummer, K. M. 2003. Characterization of a protein from Venturia inaequalis that inducesnecrosis in Malus carrying the Vm resistance gene. Physiol. Mol. Plant Pathol. 62: 193202.Google Scholar
Wright, S. A. I., Zumoff, C. H., Schneider, L., and Beer, S. V. 2001. Pantoea agglomerans strain EH318 produces two antibiotics that inhibit Erwinia amylovora in vitro. Appl. Environ. Microbiol. 67: 284292.Google Scholar
Zdor, R. E., Alexander, C. M., and Kremer, R. J. 2005. Weed suppression by deleterious rhizobacteria is affected by formulation and soil properties. Comm. Soil Sci. Plant Anal. 36: 12891299.Google Scholar