Skip to main content Accessibility help
×
Home

Acetolactate Synthase Gene Proline (197) Mutations Confer Tribenuron-Methyl Resistance in Flixweed (Descurainia sophia) Populations from China

  • Hai Lan Cui (a1), Chao Xian Zhang (a1), Shou Hui Wei (a1), Hong Jun Zhang (a2), Xiang Ju Li (a1), Yan Qiu Zhang (a2) and Gui Qi Wang (a3)...

Abstract

The molecular basis of resistance to tribenuron-methyl, an acetolactate synthase (ALS)–inhibiting herbicide was investigated in four resistant (R) and three susceptible (S) flixweed populations. The resistance level in the R populations was assessed in whole-plant pot experiments in a greenhouse, and resistance indices ranged from 723 to 1422. The ALS genes of the three S populations and four R populations were cloned and sequenced, and the full coding sequence of the ALS gene of flixweed was 2,004 bp. The sequences of the ALS genes of the three S populations collected from Shaanxi, Gansu, and Tianjin were identical. Comparison of the ALS gene sequences of the S and R populations with Arabidopsis revealed that proline at position 197 of the ALS gene was substituted by leucine in R population SSX-2, by alanine in R population SSX-3, and by serine in R populations TJ-2 and GS-2. In another study of two R flixweed populations from Hebei and Shaanxi, resistance was also related to mutation at position 197 of the ALS gene. Both studies confirmed tribenuron-methyl resistance in flixweed in China, with the resistance mechanism being conferred by specific ALS point mutations at amino acid position 197.

Copyright

Corresponding author

Corresponding author's E-mail: cxzhang@wssc.org.cn

References

Hide All
Beckie, H. J., Hall, L. M., Tardif, F. J., and Seguin-Swartz, G. 2007. Acetolactate synthase inhibitor–resistant stinkweed (Thlaspi arvense L.) in Alberta. Can. J. Plant Sci. 87:965972.
Christopher, J. T., Powles, S. B., and Holtum, J. A. M. 1992. Resistance to acetolactate synthase–inhibiting herbicides in annual ryegrass (Lolium rigidum) involves at least two mechanisms. Plant Physiol. 100:19091913.
Corbett, C-A. and Tardif, F. J. 2006. Detection of resistance to acetolactate synthase inhibitors in weeds with emphasis on DNA-based techniques: a review. Pest Manag. Sci. 62:584597.
Cui, H. L., Zhang, C. X., Zhang, H. J., Liu, X., Liu, Y., Wang, G. Q., Huang, H. J., and Wei, S. H. 2008. Confirmation of flixweed (Descurainia sophia) resistance to tribenuron in China. Weed Sci. 56:775779.
Doyle, J. J. and Doyle, J. L. 1990. Isolation of plant DNA from fresh tissue. Focus. 12:1315.
Duggleby, R. G., McCourt, J. A., and Guddat, L. W. 2008. Structure and mechanism of inhibition of plant acetohydroxyacid synthase. Plant Physiol. BioChem. 46:309324.
[GRIN] Germplasm Resources Information Network. 2010. Descurainia sophia Information from NPGS/GRIN. Beltsville, MD National Germplasm Resources Laboratory, USDA, Agricultural Research Service, National Genetic Resources Program, http://www.ars-grin.gov/cgi-bin/npgs/html/tax_search.pl. Accessed: March 18, 2010.
Heap, I. 2010. The International Survey of Herbicide Resistant Weeds. http://www.weedscience.com. Accessed: March 18, 2010.
Hickey, M. and King, C. J. 1981. 100 Families of Flowering Plants. New York Cambridge University Press. 567 p.
[ICAMA] Institute for Control of Agrichemicals, Ministry of Agriculture. 1988. The Bulletins of the Pesticide Registration in China. Beijing China Agricultural. 166 p. [In Chinese]
Li, Y. H. 1998. Weed Flora of China. 1st ed. Beijing China Agricultural. Pp.447448. [In Chinese]
Powles, S. B. and Yu, Q. 2010. Evolution in action: plants resistant to herbicide. Annu. Rev. Plant Biol. 61:317347.
Preston, C. and Mallory-Smith, C. A. 2001. Biochemical mechanisms, inheritance, and molecular genetics of herbicide resistance in weeds. Pages 2360 in Powles, S. B., and Shaner, D. L., eds. Herbicide Resistance and World Grains. Boca Raton, FL CRC.
Preston, C., Stone, L. M., Rieger, M. A., and Baker, J. 2006. Multiple effects of a naturally occurring proline to threonine substitution within acetolactate synthase in two herbicide-resistant populations of Lactuca serriola . Pestic. Biochem. Physiol. 84:227235.
Saari, L. L., Cotterman, J. C., Smith, W. F., and Primiani, M. M. 1992. Sulfonylurea herbicide resistance in common chickweed, perennial ryegrass, and Russian thistle. Pestic. Biochem. Physiol. 42:110118.
Saari, L. L., Cotterman, J. C., and Thill, D. C. 1994. Resistance to acetolactate synthase inhibiting herbicide. Pages 83139 in Powles, S. B., and Holtum, J. A. M., eds. Herbicide Resistance in Plants, Biology and Biochemistry. Boca Raton, FL Lewis.
Shaner, D. L. 1999. Resistance to acetolactate synthase (ALS) inhibitors in the United States: history, occurrence, detection and management. Weed Sci. 44:405411.
Sun, G. Q., Zhao, B. X., Yang, Y. Z., and Lu, J. P. 1990. Yield loss of crop and economic threshold of flixweed (Descurainia sophia) in wheat fields. Plant Prot. 16:2830. [In Chinese]
Tranel, P. J. and Wright, T. R. 2002. Resistance of weeds to ALS-inhibiting herbicides: what have we learned? Weed Sci. 50:700712.
Tranel, P. J., Wright, T. R., and Heap, I. M. 2010. ALS Mutations from Herbicide-Resistant Weeds. http://www.weedscience.org. Accessed: February 10, 2010.
[USDA, NRCS] U.S. Department of Agriculture, Natural Resources Conservation Service. 2010. Plants Profile for Descurainia sophia (Herb Sophia). http://plants.usda.gov/java/profile?symbol=DESO2. Accessed: March 18, 2010.
Walsh, M. J., Owen, M. J., and Powles, S. B. 2007. Frequency and distribution of herbicide resistance in Raphanus raphanistrum populations randomly collected across the Western Australian wheatbelt. Weed Res. 47:542550.
Warwick, S. I., Xu, R., Sauder, C., and Beckie, H. J. 2008. Acetolactate synthase target site mutations and single nucleotide polymorphism genotyping in ALS-resistant kochia (Kochia scoparia). Weed Sci. 56:797806.
Whaley, C. M., Wilson, H. P., and Westwood, J. H. 2007. A new mutation in plant ALS confers resistance to five classes of ALS-inhibiting herbicides. Weed Sci. 55:8390.
Yu, Q., Han, H. P., Vila-Aiub, M. M., and Powles, S. B. 2010. AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth. J. Exp. Bot. 61:39253944.
Yu, Q., Zhang, X. Q., Hashem, A., Walsh, M. J., and Powles, S. B. 2003. ALS gene proline (197) mutations confer ALS herbicide resistance in eight separated wild radish (Raphanus raphanistrum) populations. Weed Sci. 51:831838.
Zhang, Z. P. 2003. Development of chemical weed control and integrated weed management in China. Weed Biol. Manag. 3:197203.

Keywords

Acetolactate Synthase Gene Proline (197) Mutations Confer Tribenuron-Methyl Resistance in Flixweed (Descurainia sophia) Populations from China

  • Hai Lan Cui (a1), Chao Xian Zhang (a1), Shou Hui Wei (a1), Hong Jun Zhang (a2), Xiang Ju Li (a1), Yan Qiu Zhang (a2) and Gui Qi Wang (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed