Skip to main content Accessibility help

Absorption, Translocation, and Metabolism of Metribuzin in Diploid and Tetraploid Soybean (Glycine max) Plants and Cell Cultures

  • Ezzaldin O. Abusteit (a1), Frederick T. Corbin (a1), Donald P. Schmitt (a1), Joe W. Burton (a1), A. Douglas Worsham (a2) and Lafayette Thompson (a3)...


Field experiments established that tetraploid soybean [Glycine max (L.) Merr.] plants were relatively tolerant while diploid plants were highly susceptible to metribuzin [4-amino-6-tert-butyl-3-(methylthio)-as-triazin-5(4H)-one] applied both preemergence and postemergence. Sensitivity of diploids and tolerance of tetraploids was also found in growth chamber experiments. Autoradiographs prepared 4 days after 14C-metribuzin application showed a high level of 14C-translocation to all parts of diploid plants including meristems. In contrast, only low levels of 14C were translocated in tetraploid plants, with no 14C-movement into meristems. Tetraploid plants rapidly transformed absorbed metribuzin to nontoxic products. Diploids were incapable of inactivating absorbed metribuzin at a rate sufficient to prevent injury. Differences in absorption, translocation, and metabolism of metribuzin appeared to be the main factors in the diploid and tetraploid differential response in field and growth chamber experiments. Differences in the rate of metribuzin metabolism appeared to be the factor responsible for the differential response in diploid and tetraploid cell suspension cultures. The primary polar metabolites were conjugates of metribuzin and deaminated metribuzin [6-tert-butyl-3-(methylthio)-1,2,4-triazin-5(4H)-one] with a ratio of 8:1, respectively.



Hide All
1. Ashley, R. A. 1974. Varietal susceptibility of transplanted tomatoes to metribuzin injuries. Proc. Northeast Weed Sci. Soc. 28:249252.
2. Barrentine, W. L., Edwards, C. J. Jr., and Hartwig, E. E. 1976. Screening soybeans for tolerance to metribuzin. Agron. J. 68: 351353.
3. Barrentine, W. L., Hartwig, E. E., Edwards, C. J. Jr., and Kilen, T. C. 1982. Tolerance of three soybean cultivars to metribuzin. Weed Sci. 30:334348.
4. De Villiers, O. T. and Van der Merwe, M. J. 1978. A study of the mode of action of methabenzthiazuron and metribuzin in isolated cells of Phaseolus vulgaris (beans). S. Afr. J. Sci. 74:440442.
5. De Villiers, O. T. and Van der Merwe, M. J. 1979. Comparative effects of methabenzthiazuron and metribuzin on photosystem II and ATPase activity of Phaseolus vulgaris (beans). S. Afr. J. Sci. 75:315316.
6. Duke, W. B., Schluter, M. M., Jordan, G. L., Hunt, J. F., and Van Natta, M. W. 1976. The effect of metribuzin on ten soybean cultivars. Proc. Northeast Weed Sci. Soc. 30:1317.
7. Eastin, E. F., Sij, J. W., and Graigmiles, J. P. 1980. Tolerance of soybean genotypes to metribuzin. Agron. J. 72:167168.
8. Edwards, C. J. Jr., Barrentine, W. L., and Kilen, T. C. 1976. Inheritance of sensitivity to metribuzin in soybean varieties. Crop Sci. 16:119120.
9. Frear, D. S., Mansager, E. R., Swanson, H. R., and Tanaka, F. S. 1983. Metribuzin metabolism in tomato: Isolation and identification of N-glucoside conjugates. Pestic. Biochem. Physiol. 19:270281.
10. Gamborg, O. L., Miller, R. A., and Ozima, K. 1968. Nutrient requirement of suspension cultures of soybean root cells. Exp. Cell Res. 50:151158.
11. Graf, G. T. and Ogg, A. G. Jr. 1976. Differential response of potato cultivars to metribuzin. Weed Sci. 24:137139.
12. Hardcastle, W. S. 1975. Differences in susceptibility of soybean cultivars to metribuzin. Pestic. Sci. 6:589594.
13. Hardcastle, W. S. 1979. Soybean cultivar response to metribuzin in solution culture. Weed Sci. 27:278279.
14. Hargroder, T. G. and Rogers, R. L. 1974. Behavior and fate of metribuzin in soybeans and hemp sesbania. Weed Sci. 22: 238245.
15. Henne, R. C. 1975. Tomato variety response to metribuzin phytotoxicity. Proc. Northeast Weed Sci. Soc. 29:225229.
16. Hilton, H. W., Nomura, N. S., Yanger, W. L. Jr., and Kameda, S. S. 1974. Absorption, translocation, and metabolism of metribuzin (BAY-94337) in sugarcane. J. Agric. Food Chem. 22:578582.
17. Littlejohns, D. A., Allen, W. R., and Pilblado, R. E. 1977. Effects of metribuzin on the performance of soybean cultivars. Can. J. Plant Sci. 57:551554.
18. Mangot, B. S. and Slife, F. W. 1979. Differential metabolism of metribuzin by two soybean cultivars. Weed Sci. 27:267269.
19. Maun, M. A. and McLeod, W. J. 1978. Absorption and metabolism of metribuzin in barnyardgrass and American nightshade. Can. J. Plant Sci. 58:485491.
20. Oswald, T. H., Smith, A. E., and Phillips, D. V. 1978. Phytotoxicity and detoxification of metribuzin in dark-grown suspension cultures of soybean. Pestic. Biochem. Physiol. 8:7383.
21. Payne, R. C. and Koszykowski, T. J. 1977. Differentiation of soybean cultivars by metribuzin sensitivity. J. Seed Technol. 2:110.
22. Ramthun, L. E. and Talbert, R. E. 1976. Differences in response of tomato cultivars to metribuzin. Proc. South. Weed Sci. Soc. 29:203.
23. Sieczka, J. B. 1975. The effect of postemergence applications of metribuzin on six potato cultivars. Proc. Northeast Weed Sci. Soc. 29:308315.
24. Souza Machado, V., Phatak, S. C., and Nonnecke, I. L. 1982. Inheritance of the tomato to metribuzin herbicide. Euphytica 31:129138.
25. Thornton, J. S. and Stanley, C. W. 1977. Gas chromatographic determination of Sencor and metabolites in crops and soil. J. Agric. Food Chem. 25:380386.
26. Webster, G.R.B., Macdonald, S. R., and Sarna, L. P., 1975. Gas liquid chromatographic determination of Sencor (metribuzin) and major metabolites and photoproduct. Carryover toxicity to economic crops following original use of the herbicide. J. Agric. Food Chem. 23:7476.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed