Skip to main content Accessibility help
×
Home
Hostname: page-component-77ffc5d9c7-ctdxh Total loading time: 0.681 Render date: 2021-04-23T15:38:26.344Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Weed Management Decisions in Corn Based on Bioeconomic Modeling

Published online by Cambridge University Press:  12 June 2017

Donald W. Lybecker
Affiliation:
Dep. Agric. and Res. Econ., Colorado State Univ., Fort Collins, 80523
Edward E. Schweizer
Affiliation:
Agric. Res. Serv., U.S. Dep. Agric., Crops Res. Lab., 1701 Center Ave., Fort Collins, CO 80526
Robert P. King
Affiliation:
Dep. Agric. and Appl. Econ., Univ. Minnesota, St. Paul, MN 55108

Abstract

A fixed (conventional) weed management strategy in corn was compared to three other strategies (two mixed and one flexible) in terms of weed control, grain yield, gross margin (gross income minus herbicide treatment costs), and herbicide use under furrow irrigation for four consecutive years. The fixed strategy prespecified preplanting, preemergence, postemergence, and layby herbicides. The flexible strategy herbicide treatments were specified by a computer bioeconomic model. Model decisions were based on weed seed in soil before planting, weed densities after corn emergence, herbicide costs, expected corn grain yield and selling price, and other parameters. The two mixed strategies were a combination of fixed and flexible strategies and designated either specified soil-applied herbicides (mixed/soil), or no soil-applied herbicide (mixed/no soil); postemergence treatments were determined by the model. Average corn grain yield was 10 280 kg ha–1 and gross income was 920 $ ha–1 and neither differed among strategies. Total weed density and gross margin were significantly higher for the mixed/no soil and flexible strategies compared to the mixed/soil and fixed strategies. Total weed density averaged 28 720, 28 100, 10 910, and 680 plants ha–1 for the mixed/no soil, flexible, mixed/soil, and fixed strategies, respectively. Annual gross margins for the four strategies averaged 885, 875, 845, and 810 $ ha–1, respectively. Herbicide use over the 4-yr period for these four strategies averaged 3.8, 5.3, 20.5, and 26.9 kg ha–1, respectively, and each value differed from the other. Thus, weeds can be managed in corn, gross margins increased, and herbicide use decreased by employing a bioeconomic weed-corn model to make weed management decisions.

Type
Special Topics
Copyright
Copyright © 1991 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

1. Anonymous. 1989. Fanners and information: perceptions, sources, and needs. Pages 2958 in Agrichemicals and Groundwater Protection: Resources and Strategies for State and Local Management. October, 1988. St. Paul, Minn. Freshwater Foundation, Navarre, MN.Google Scholar
2. Anonymous. 1989. Pesticides. Pages 1320 in Agricultural Resources: Situation and Outlook Report, AR-13. U.S. Dep. Agric., Econ. Res. Serv., Washington, DC.Google Scholar
3. Anonymous. 1989. Research Plan for Water Quality. U.S. Dep. Agric., Washington, DC. 14 pp.Google Scholar
4. Dalsted, N., Gutierrez, P. H., Schaubert, D., Sharp, R., and Holman, K. L. 1986. Selected 1985 Crop Enterprise Budgets for Colorado. ANRE Information Report Number IR:86-6. Dep. Agric. and Nat. Res. Econ. Colorado State Univ., Fort Collins, CO. 78 pp.Google Scholar
5. Holden, P. W. 1986. Pesticides and Groundwater Quality: Issues and Problems in Four States. National Academy Press, Washington, DC. 124 pp.Google Scholar
6. King, R. P., Lybecker, D. W., Schweizer, E. E., and Zimdahl, R. L. 1986. Bioeconomic modeling to simulate weed control strategies for continuous corn (Zea mays). Weed Sci. 34:972979.Google Scholar
7. Lybecker, D. W., Schweizer, E. E., and King, R. P. 1988. Economic analysis of four weed management systems. Weed Sci. 36:846849.Google Scholar
8. Schweizer, E. E., Lybecker, D. W., and Zimdahl, R. L. 1988. Systems approach to weed management in irrigated crops. Weed Sci. 36:840845.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 3 *
View data table for this chart

* Views captured on Cambridge Core between 12th June 2017 - 23rd April 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Weed Management Decisions in Corn Based on Bioeconomic Modeling
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Weed Management Decisions in Corn Based on Bioeconomic Modeling
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Weed Management Decisions in Corn Based on Bioeconomic Modeling
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *