Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-d5zgf Total loading time: 0.313 Render date: 2021-03-02T04:21:47.214Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

The quantitative relationship between weed emergence and the physical properties of mulches

Published online by Cambridge University Press:  20 January 2017

Charles L. Mohler
Affiliation:
Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY 14853
Corresponding
E-mail address:

Abstract

Mulches on the soil surface are known to suppress weed emergence, but the quantitative relationships between emergence and mulch properties have not been clearly defined. A theoretical framework for describing the relationships among mulch mass, area index, height, cover, light extinction, and weed emergence is introduced. This theory is applied to data from experiments on emergence of four annual weed species through mulches of selected materials applied at six rates. Mulch materials, in order from lowest to highest surface-area-to-mass ratio, were bark chips, Zea mays stalks, Secale cereale, Trifolium incarnatum, Vicia villosa, Quercus leaves, and landscape fabric strips. The order of weed species' sensitivity to mulches was Amaranthus retroflexus > Chenopodium album > Setaria faberi > Abutilon theophrasti, regardless of mulch material. The success of emergence through mulches was related to the capacity of seedlings to grow around obstructing mulch elements under limiting light conditions. Mulch area index was a pivotal property for quantitatively defining mulch properties and understanding weed emergence through mulches. A two-parameter model of emergence as a function of mulch area index and fraction of mulch volume that was solid reasonably predicted emergence across the range of mulches investigated.

Type
Research Article
Copyright
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.

References

Alm, D. M., Stoller, E. W., and Wax, L. M. 1993. An index model for predicting seed germination and emergence rates. Weed Technol. 7:560569.Google Scholar
Blum, U., King, L. D., Gerig, T. M., Lehman, M. E., and Worsham, A. D. 1997. Effects of clover and small grain cover crops and tillage techniques on seedling emergence of some dicotyledonous weed species. Amer. J. Alternative Agric. 12:146161.CrossRefGoogle Scholar
Bosy, J. L. and Reader, R. J. 1995. Mechanisms underlying the suppression of forb seedling emergence by grass litter. Functional Ecol. 9:635639.CrossRefGoogle Scholar
Buhler, D. D., Mester, T. C., and Kohler, K. A. 1996. The effect of maize residues and tillage on emergence of Setaria faberi, Abutilon theophrasti, Amarathus retroflexus and Chenopodium album . Weed Res. 36:153165.CrossRefGoogle Scholar
Facelli, J. M. and Pickett, S.T.A. 1991a. Plant litter: Its dynamics and effects on plant community structure. Bot. Rev. 57:132.CrossRefGoogle Scholar
Facelli, J. M. and Pickett, S.T.A. 1991b. Plant litter: Light interception and effects on an old-field plant community. Ecol. 72:10241031.CrossRefGoogle Scholar
Forcella, F. 1998. Real-time assessment of seed dormancy and seedling growth for weed management. Seed Sci. Res. 8:201209.CrossRefGoogle Scholar
Gallagher, R. S. and Cardina, J. 1998. Phytochrome-mediated Amaranthus germination II: development of very low fluence sensitivity. Weed Sci. 46:5358.Google Scholar
Gregory, J. M. 1982. Soil cover prediction with various amounts and types of crop residue. Trans. Amer. Soc. Agric. Eng. 13331337.Google Scholar
Hatfield, J. L. 1998. Application of micrometeorology to weed biology and modeling. Pages 271292 In Hatfield, J. L., Buhler, D. D., and Stewart, B. A., eds. Integrated Weed and Soil Management. Chelsea, MI: Ann Arbor Press.Google Scholar
Lybecker, D. W., Schweizer, E. E., and King, R. P. 1991. Weed management decisions in corn based on bioeconomic modeling. Weed Sci. 39:124129.Google Scholar
Mohler, C. L. 1993. A model of the effects of tillage on emergence of weed seedlings. Ecol. Applic. 3:5373.CrossRefGoogle ScholarPubMed
Mohler, C. L. and Teasdale, J. R. 1993. Response of weed emergence to rate of Vicia villosa Roth and Secale cereale L. residue. Weed Res. 33:487499.CrossRefGoogle Scholar
Swinton, S. M. and King, R. P. 1994. A bioeconomic model for weed management in corn and soybean. Agric. Syst. 44:313335.CrossRefGoogle Scholar
Teasdale, J. R. 1998. Cover crops, smother plants, and weed management. Pages 247270 In Hatfield, J. L., Buhler, D. D., and Stewart, B. A., eds. Integrated Weed and Soil Management. Chelsea, MI: Ann Arbor Press.Google Scholar
Teasdale, J. R. and Mohler, C. L. 1993. Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye. Agron. J. 85:673680.CrossRefGoogle Scholar
Vidal, R. A. and Bauman, T. T. 1996. Surface wheat residues, giant foxtail and soybean yield. Weed Sci. 44:939943.Google Scholar
Wagner-Riddle, C., Gillespie, T. J., and Swanton, C. J. 1996. Rye mulch characterization for the purpose of microclimate modelling. Agric. Forest Meteorol. 78:6781.CrossRefGoogle Scholar
White, R. H., Worsham, A. D., and Blum, U. 1989. Allelopathic potential of legume debris and aqueous extracts. Weed Sci. 37:674679.Google Scholar
Williams, M. M. II, Mortensen, D. A., and Doran, J. W. 1998. Assessment of weed and crop fitness in cover crop residues for integrated weed management. Weed Sci. 46:595603.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 36 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 2nd March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The quantitative relationship between weed emergence and the physical properties of mulches
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The quantitative relationship between weed emergence and the physical properties of mulches
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The quantitative relationship between weed emergence and the physical properties of mulches
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *