Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-sbc4w Total loading time: 0.346 Render date: 2021-02-28T09:36:09.564Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Molecular Responses of Sorghum to Purple Witchweed (Striga hermonthica) Parasitism

Published online by Cambridge University Press:  20 January 2017

Yukihiro Hiraoka
Graduate School of Science and Technology, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
Yukihiro Sugimoto
Graduate School of Science and Technology, Kobe University, Rokkodai, Nada, Kobe 657-8501, Japan
E-mail address:


Sorghum genes responsive to purple witchweed parasitism were isolated, and their expression was analyzed. Using the suppression-subtractive hybridization strategy, 30 genes that were up-regulated in response to purple witchweed parasitism were isolated from the roots of a susceptible sorghum cultivar ‘Abu 70’. The changes in the expression of each gene were investigated in the roots and leaves of the sorghum cultivars ‘Wad Ahmed’ and ‘Tabat’ were parasitized by purple witchweed. Tabat is more susceptible and Wad Ahmed is less susceptible to purple witchweed than Abu 70. Further, the changes in the gene expression and host susceptibility to purple witchweed were studied in the roots of the three sorghum cultivars after treatment with salicylic acid (SA) or methyl jasmonate (MeJA). Purple witchweed parasitism induced jasmonic acid (JA)-responsive genes and suppressed SA-responsive genes in the roots of the cultivars Abu 70 and Tabat. In contrast, purple witchweed parasitism in the less-susceptible cultivar Wad Ahmed induced SA-responsive genes and induced JA-responsive genes to a small extent. SA, but not MeJA, decreased the susceptibility of all the sorghum cultivars to purple witchweed. Systemic expression of a few genes was observed in the leaves of the purple witchweed–parasitized sorghum cultivars.

Physiology, Chemistry, and Biochemistry
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.


Agre, P., Bonhivers, M., and Borgnia, M. J. 1998. The aquaporins, blueprints for cellular plumbing systems. J. Biol. Chem. 273:1465914662.CrossRefGoogle ScholarPubMed
Akiyama, K., Matsuzaki, K., and Hayashi, H. 2005. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature. 435:824827.CrossRefGoogle ScholarPubMed
Berner, D. K., Kling, J. G., and Singh, B. B. 1995. Striga research and control. Plant Dis. 79:652660.CrossRefGoogle Scholar
Cai, T., Babiker, A. G., and Butler, L. G. 1993. Morphological response of witchweed (Striga asiatica) to in vitro culture. J. Exp. Bot. 44:13771384.CrossRefGoogle Scholar
Cheong, Y. H., Chang, H. S., Gupta, R., Wang, X., Zhu, T., and Luan, S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis . Plant Physiol. 129:661677.CrossRefGoogle ScholarPubMed
Diatchenko, L., Lau, Y-F. C., Campbell, A. P., Chenchik, A., Moqadam, F., Huang, B., Lukyanov, S., Lukyanov, K., Gurskaya, N., Sverdlov, E., and Siebert, P. D. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. U. S. A. 93:60256030.CrossRefGoogle ScholarPubMed
Garbarino, J. E., Rockhold, D. R., and Belknap, W. R. 1992. Expression of stress-responsive ubiquitin genes in potato tubers. Plant Mol. Biol. 20:235244.CrossRefGoogle ScholarPubMed
Gowda, B. S., Riopel, J. L., and Timko, M. P. 1999. NRSA-1: a resistance gene homolog expressed in roots of non-host plants following parasitism by Striga asiatica (witchweed). Plant J. 20:217230.CrossRefGoogle Scholar
Gurney, A. L., Slate, J., Press, M. C., and Scholes, J. D. 2006. A novel form of resistance in rice to the angiosperm parasite Striga hermonthica . New Phytol. 169:199208.CrossRefGoogle ScholarPubMed
Hamada, T., Nishiuchi, T., Kodama, H., Nishimura, M., and Iba, K. 1996. cDNA cloning of a wounding-inducible gene encoding a plastid ω-3 fatty acid desaturase from tobacco. Plant Cell Physiol. 37:606611.CrossRefGoogle ScholarPubMed
Hamilton, E. W. and Coleman, J. S. 2001. Heat-shock proteins are induced in unstressed leaves of Nicotiana attenuata (Solanaceae) when distant leaves are stressed. Am. J. Bot. 88:950955.CrossRefGoogle Scholar
Hipskind, J. D., Hanau, R., Leite, B., and Nicholson, B. L. 1990. Phytoalexin accumulation in sorghum: identification of an apigeninidin acyl ester. Physiol. Mol. Plant Pathol. 36:381396.CrossRefGoogle Scholar
Hochstrasser, M. 1996. Ubiquitin-dependent protein degradation. Annu. Rev. Genet. 1996 30:405439.CrossRefGoogle ScholarPubMed
Kim, K. C., Fan, B., and Chen, Z. 2006. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae . Plant Physiol. 142:11801192.CrossRefGoogle ScholarPubMed
Krishna, P. and Gloor, G. 2001. The hsp90 family of proteins in Arabidopsis thaliana . Cell Stress and Chaperones. 6:238246.2.0.CO;2>CrossRefGoogle ScholarPubMed
Kusumoto, D., Goldwasser, Y., Xie, X., Yoneyama, K., Takeuchi, Y., and Yoneyama, K. 2007. Resistance of red clover (Trifolium pratense) to the root parasitic plant Orobanche minor is activated by salicylate but not by jasmonate. Ann. Bot. 100:537544.CrossRefGoogle Scholar
Liechti, R. and Farmer, E. E. 2002. The jasmonate pathway. Science. 296:16491650.CrossRefGoogle ScholarPubMed
Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔC T method. Methods. 25:402408.CrossRefGoogle Scholar
Mason, H. S. and Mullet, J. E. 1990. Expression of two soybean vegetative storage protein genes during development and in response to water deficit, wounding, and jasmonic acid. Plant Cell. 2:569579.CrossRefGoogle ScholarPubMed
Matusova, R., Rani, K., Verstappen, F. W. A., Franssen, M. C. R., Beale, M. H., and Bouwmeester, H. J. 2005. The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol. 139:920934.CrossRefGoogle ScholarPubMed
Mohamed, A., Ellicott, A., Housley, T. L., and Ejeta, G. 2003. Hypersensitive response to Striga infection in sorghum. Crop Sci. 43:13201324.CrossRefGoogle Scholar
Nemchenko, A., Kunze, S., Feussner, I., and Kolomiets, M. 2006. Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. J. Exp. Bot. 57:37673779.CrossRefGoogle ScholarPubMed
Nicholson, R. L., Kollipara, S. S., Vincent, J. R., Lyons, P. C., and Cadena-Gomez, G. 1987. Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and non pathogenic fungi. Proc. Natl. Acad. Sci. U. S. A. 84:55205524.CrossRefGoogle Scholar
Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39:500507.CrossRefGoogle Scholar
Sachs, J. V. 1975. Experimental methods for the investigation of plant nutrient requirements. Pages 3169. In Hewitt, E. J. and Smith, T. A. Plant Mineral Nutrition. London English Universities Press.Google Scholar
Seki, M., Narusaka, M., Abe, H., Kasuga, M., Yamaguchi-Shinozaki, K., Carninci, P., Hayashizaki, Y., and Shinozaki, K. 2001. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell. 13:6172.CrossRefGoogle ScholarPubMed
Sugimoto, Y., Ali, A. M., Yabuta, S., Kinoshita, H., Inanaga, S., and Itai, A. 2003. Germination strategy of Striga hermonthica involves regulation of ethylene biosynthesis. Physiol. Plant. 119:137145.CrossRefGoogle Scholar
Takahashi, R. and Shimosaka, E. 1997. cDNA sequence analysis and expression of two cdd-regulated genes in soybean. Plant Sci. 123:93104.CrossRefGoogle Scholar
Torres, M. J., Tomilov, A. A., Tomilova, N., Reagan, R. L., and Yoder, J. I. 2005. Pscroph, a parasitic plant EST database enriched for parasite associated transcripts. BMC Plant Biol. 5:19.CrossRefGoogle ScholarPubMed
Vieira-Dos-Santos, C., Delavault, P., Letousey, P., and Thalouarn, P. 2003. Defense gene expression analysis of Arabidopsis thaliana parasitized by Orobanche ramosa . Phytopathology. 93:451457.CrossRefGoogle Scholar
Vogel, J. P., Raab, T. K., Schiff, C., and Somerville, S. C. 2002. PMR6, a pectate lyase-like gene required for powdery mildew susceptibility in Arabidopsis . Plant Cell. 14:20952106.CrossRefGoogle ScholarPubMed

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 9 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Molecular Responses of Sorghum to Purple Witchweed (Striga hermonthica) Parasitism
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Molecular Responses of Sorghum to Purple Witchweed (Striga hermonthica) Parasitism
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Molecular Responses of Sorghum to Purple Witchweed (Striga hermonthica) Parasitism
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *