Skip to main content Accessibility help
Hostname: page-component-99c86f546-4hcbs Total loading time: 1.004 Render date: 2021-12-07T06:57:13.750Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

Article contents

Chemicals from nature for weed management

Published online by Cambridge University Press:  20 January 2017

Franck E. Dayan
Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, P.O. Box 8048, University, MS 38677
Agnes M. Rimando
Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, P.O. Box 8048, University, MS 38677
Kevin K. Schrader
Natural Products Utilization Research Unit, Agricultural Research Service, United States Department of Agriculture, P.O. Box 8048, University, MS 38677
Giovanni Aliotta
Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi, 43-81100 Caserta, Italy
Anna Oliva
Dipartimento di Scienze della Vita, Seconda Università degli Studi di Napoli, Via Vivaldi, 43-81100 Caserta, Italy
Joanne G. Romagni
Department of Biology, St. Thomas College, Houston, TX 77006


Natural products represent a vast repository of materials and compounds with evolved biological activity, including phytotoxicity. Some of these compounds can be used directly or as templates for herbicides. The molecular target sites of these compounds are often unique. Strategies for the discovery of these materials and compounds are outlined. Numerous examples of individual phytotoxins and crude preparations with weed management potential are provided. An example of research to find a natural product solution of a unique pest management problem (blue-green algae in aquaculture) is described. Finally, the problems associated with natural products for pest control are discussed.

Invited Paper
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Abbas, H. K. and Duke, S. O. 1997. Plant pathogens and their phytotoxins as herbicides. Pages 120 In Upadhyay, R. K. and Mukerji, K. G., eds. Toxins in Plant Disease Development and Evolving Biotechnology. New Delhi: Oxford & IBH Publishing.Google Scholar
Abbas, H. K., Duke, S. O., Shier, W. T., and Duke, M. V. 2002. Inhibition of ceramide synthesis in plants by phytotoxins. In Upadhyay, R. K., ed. Advances in Microbial Toxin Research and Its Biotechnological Exploitation. London: Kluwer Academic Publishers/Plenum Press. In press.Google Scholar
Abbas, H. K., Duke, S. O., Shier, W. T., Riley, R. T., and Kraus, G. A. 1996. The chemistry and biological activities of the natural products AAL-toxin and the fumonisins. Pages 293308 In Singh, B. R. and Tu, A. T., eds. Natural Toxins 2. Structure, Mechanism of Action, and Detection. Advances in Experimental Medicine and Biology. Volume 391. New York: Plenum Press.Google Scholar
Abbas, H. K., Tanaka, T., Duke, S. O., et al. 1994. Fumonisin and AAL-toxin-induced disruption of sphingolipid metabolism with accumulation of free sphingoid bases: involvement in plant disease. Plant Physiol. 106:10851093.CrossRefGoogle Scholar
Abbas, H. K., Tanaka, T., Duke, S. O., and Boyette, C. D. 1995. Susceptibility of various crop and weed species to AAL-toxin, a natural herbicide. Weed Technol. 9:125130.Google Scholar
Abdul-Wahab, A. S. and Al-Naib, F. A. G. 1972. Inhibitional effects of Imperata cylindrica (L.) P. B. Bull. Iraq Nat. Hist. Mus. 5:1724.Google Scholar
Abdul-Wahab, A. S. and Rice, E. L. 1967. Plant inhibition by Johnson grass and its possible significance in old field succession. Bull. Torrey Bot. Club 94:486497.CrossRefGoogle Scholar
Abo-Khatwa, A. N., Al-Robai, A. A., and Al-Jawhari, D. A. 1996. Lichen acids as uncouplers of oxidative phosphorylation of mouse-liver mitochondria. Nat. Toxins 4:96102.CrossRefGoogle Scholar
Alam, S. M., Azmi, A. R., Alam, S. A., Naqvi, S. S. M., and Ansari, R. 1998. Effect of aqueous leaf extract of field bindweed (Convolvulus arvensis L.) and salinity on growth of wheat. Rachis 17:4951.Google Scholar
Aliotta, G. and Cafiero, G. 1999. Biological properties of Ruta graveolens L. and its potential use in sustainable agicultural systems. Pages 551563 In Inderjit, , Dakshiny, K.M.M., and Foy, C. L., eds., Principles and Practice in Plant Ecology. Boca Raton, FL: CRC Press.Google Scholar
Aliotta, G., Cafiero, G., De Feo, V., Di Blasio, B., Iacovino, R., and Oliva, A. 2000. Allelochemicals from rue (Ruta graveolens L.) and olive (Olea europaea L.) oil mill waste waters as potential natural pesticides. Curr. Top. Phytochem. 3:167177.Google Scholar
Altieri, M. A. and Doll, J. D. 1978. The potential of allelopathy as a tool for weed management in crops. PANS 24:495502.Google Scholar
Amagasa, T., Paul, R. N., Heitholt, J. J., and Duke, S. O. 1994. Physiological effects of cornexistin on Lemna pausicostata . Pestic. Biochem. Physiol. 49:3752.CrossRefGoogle Scholar
Ayer, S. W., Isaac, B. G., Krupa, D. M., Crosby, K. E., Letendre, L. J., and Stonard, R. J. 1989. Herbicidal compounds from microorganisms. Pestic. Sci. 27:221223.Google Scholar
Bailey, N. J. C., Stanley, P. D., Hadfield, S. T., Lindon, J. C., and Nicholson, J. K. 2000. Mass spectrometrically detected directly coupled high performance liquid chromatrography/nuclear magnetic resonance spectroscopy/mass spectrometry for the identification of xenobiotics metabolites in maize plants. Rapid Commun. Mass Spectrom. 14:679684.3.0.CO;2-V>CrossRefGoogle Scholar
Barazani, O. and Friedman, J. 2001. Allelopathic bacteria and their impact on higher plants. Crit. Rev. Microbiol. 27:4155.CrossRefGoogle ScholarPubMed
Barberi, P., Cozzani, A., Macchia, M., and Bonari, E. 1998. Size and composition of the weed seedbank under different management systems for continuous maize cropping. Weed Res. 38:319334.CrossRefGoogle Scholar
Barnes, J. P., Putnam, A. R., and Burke, B. A. 1986. Allelopathic activity of rye (Secale cereale L.). Pages 271286 In Putnam, A. and Tang, C. S., eds. The Science of Allelopathy. New York: Wiley Interscience.Google Scholar
Bhowmik, P. C. and Doll, J. D. 1979. Evaluation of allelopathic effects of selected weed species on corn and soybeans. Proc. N. Cent. Weed Control Conf. 34:4345.Google Scholar
Bieber, G. L. and Hoveland, C. S. 1968. Phytotoxicity of plant materials on seed germination of crownvetch, Coronilla varia L. Agron. J. 60:185188.CrossRefGoogle Scholar
Bingamen, B. R. and Christians, N. E. 1995. Greenhouse screening of corn gluten meal as a natural control product for broadleaf and grassy weeds. HortSci. 30:12561259.Google Scholar
Bland, J. M., Edwards, J. V., Eaton, S. R., and Lax, A. R. 1993. Potential of natural peptide compounds as leads for novel pesticides. Pestic. Sci. 39:331340.CrossRefGoogle Scholar
Bobylev, M. M., Bobyleva, L. I., and Strobel, G. A. 1996. Synthesis and bioactivity of analogs of maculosin, a host-specific phytotoxin produced by Alternaria alternata on spotted knapweed (Centauria maculosa). J. Agric. Food Chem. 44:39403964.CrossRefGoogle Scholar
Calera, M. R., Anaya, A. L., and Gavilanes-Ruiz, M. 1995. Effect of phytotoxic resin glycoside on activity of H+-ATPase from plasma membrane. J. Chem. Ecol. 21:289297.CrossRefGoogle Scholar
Canel, C., Moraes, R. M., Dayan, F. E., and Ferreira, D. 2000. Podophyllotoxin. Phytochemistry 54:115120.CrossRefGoogle ScholarPubMed
Casini, P. and Olivero, L. 2001. Allelopathic effects of legume cover crops on cogon grass (Imperata brasiliensis Trin.). Allelopathy J. 88:189200.Google Scholar
Chen, D. Z., Patel, D. V., Hackbarth, C. J., et al. 2000. Actinonin, a naturally occurring antibacterial agent, is a potent deformylase inhibitor. Biochemistry 39:12561262.CrossRefGoogle ScholarPubMed
Chou, C. H., Chiang, Y. C., and Cheng, H. H. 1981. Autointoxication mechanism of Oryza sativa . III. Effect of temperature on phytotoxin production during rice straw decomposition in soil. J. Chem. Ecol. 7:5667.Google Scholar
Chou, C. H. and Lin, H. J. 1976. Autointoxication mechanisms of Oryza sativa . I. Phytotoxic effects of decomposing rice residues in soil. J. Chem. Ecol. 2:353367.Google Scholar
Chou, C. H. and Patrick, Z. A. 1976. Identification and phytotoxic activity of compounds produced during decomposition of corn and rye residues in soil. J. Chem. Ecol. 2:369387.CrossRefGoogle Scholar
Choudhary, M. I. and Atta-ur-Rahman, . 1997. Bioactivity-guided phytochemicals from medicinal plants. R. Soc. Chem. Spec. Publ. 200 (Phytochem. Diversity): 4152.Google Scholar
Christians, N. E. 1993. The use of corn gluten meal as a natural preemergence weed control in turf. Pages 284290 In Carrow, R. N., Christians, N. E., and Shearman, R. C., eds. International Turfgrass Society Research Journal. Overland Park, KS: Intertec Publishing.Google Scholar
Constant, H. and Beecher, C.W.W. 1995. A method for the dereplication of natural product extracts using electrospray HPLC/MS. Nat. Prod. Lett. 6:193196.CrossRefGoogle Scholar
Dayan, F. E., Hernandez, A., Allen, S. N., Moraes, R. M., Vroman, J. A., Avery, M. A., and Duke, S. O. 1999a. Comparative phytotoxicity of artemisinin and several sesquiterpene analogues. Phytochemistry 50:607614.CrossRefGoogle Scholar
Dayan, F. E., Rimando, A. M., Tellez, M. R., Scheffler, B. E., Roy, T., and Abbas, H. K. 2002. The mechanism of action of the fungal phytotoxin 2,5-anhydro-D-glucitol requires bioactivation by glycolytic enzymes. Weed Sci. Soc. Am. Abstr. 42:49.Google Scholar
Dayan, F. E., Romagni, J. G., Tellez, M. R., Rimando, A. M., and Duke, S. O. 1999b. Managing weeds with natural products. Pestic. Outlook 10:185188.Google Scholar
Dayan, F. E., Watson, S. B., Galindo, J.C.G., Hernandez, A., Dou, J., McChesney, J. D., and Duke, S. O. 1999c. Phytotoxicity of quassinoids: physiological responses and structural requirements. Pestic. Biochem. Physiol. 65:1524.CrossRefGoogle Scholar
De Feo, V., De Simone, F., Giannattasio, F., Magnifico, V., Marcantonio, A., and Palumbo, A. D. 1997. Allelopathic effects of broccoli (Brassica oleracea L. var. italica Plenck) extract on vegetable crops. Allelopathy J. 4:277281.Google Scholar
Dilday, R. H., Moldenhauer, K. A., Yan, W. G., and Gealy, D. R. 1998. Allelopathic activities of barnyard grass in rice and yield reduction due to barnyard grass infestation. Ark. Agric. Exp. Stn. 460:2731.Google Scholar
Dinardo, W., Pellegrini, M. T., and Alves, P. L. C. A. 1998. Inhibitory effects of Jackbean (Canavalia ensiformis L.) leaf residue on germination and vigour of crops and weeds. Allelopathy J. 5:3542.Google Scholar
Dirk, L. M. A., Williams, M. A., and Houtz, R. L. 2001. Eukaryotic peptide deformylases, nuclear-encoded and chloroplast-targeted enzymes in Arabidopsis . Plant Physiol. 127:97107.CrossRefGoogle Scholar
Duke, S. O., Abbas, H. K., Amagasa, T., and Tanaka, T. 1996. Phytotoxins of microbial origin with potential for use as herbicides. Pages 82113 In Copping, L. G., ed. Crop Protection Agents from Nature: Natural Products and Analogues. Critical Reviews on Applied Chemistry. Volume 35. Cambridge, U.K.: Society for Chemical Industries.Google Scholar
Duke, S. O., Baerson, S. R., Dayan, F. E., Kagan, I. A., Michel, A., and Scheffler, B. E. 2001. Biocontrol of weeds without the biocontrol agent. Pages 96105 In Gressel, J. and Vurro, G. M., eds. NATO Advanced Research Workshop: Enhancing Biocontrol Agents and Handling Risks. Amsterdam: IOS Press.Google Scholar
Duke, S. O., Canel, C., Rimando, A. M., Tellez, M. R., Duke, M. V., and Paul, R. N. 2000a. Current and potential exploitation of plant glandular trichome productivity. Adv. Bot. Res. 31:121151.CrossRefGoogle Scholar
Duke, S. O., Dayan, F. E., Hernandez, A., Duke, M. V., and Abbas, H. K. 1997. Natural products as leads for new herbicide modes of action. Brighton Crop Prot. Conf., Weeds—1997. 2:579586.Google Scholar
Duke, S. O., Dayan, F. E., and Rimando, A. M. 1998. Natural products as tools for weed management. Proc. Jpn. Weed Sci. Soc. (Suppl.):111.Google Scholar
Duke, S. O., Dayan, F. E., and Rimando, A. M. 2000b. Natural products and herbicide discovery. Pages 105133 In Cobb, A. H. and Kirkwood, R. C., eds. Herbicides and their Mechanisms of Action. Sheffield, U.K.: Academic Press.Google ScholarPubMed
Duke, S. O., Dayan, F. E., and Romagni, J. G. 2000c. Natural products as sources for new mechanisms of herbicidal action. Crop Prot. 19:583589.CrossRefGoogle Scholar
Duke, S. O., Dayan, F. E., Romagni, J. G., and Rimando, A. M. 2000d. Natural products as sources of herbicides: current status and future trends. Weed Res. 40:99111.CrossRefGoogle Scholar
Duke, M. V., Paul, R. N., Elsohly, H. K., Sturtz, G., and Duke, S. O. 1994. Localization of artemisinin and artemisitene in foliar tissues of glanded and glandless biotypes of Artemisia annua . Int. J. Plant Sci. 155:365373.CrossRefGoogle Scholar
Duke, S. O., Rimando, A. M., Dayan, F. E., et al. 2000e. Pages 120 In Bidlack, W. R., Omaye, S. T., Meskin, M. S., and Topham, D.K.W., eds. Strategies for the Discovery of Bioactive Phytochemicals. Phytochemicals as Bioactive Agents. Lancaster, PA: Technomic Publishing.Google Scholar
Duke, S. O., Vaughn, K. C., Croom, E. M. Jr., and Elsohly, H. N. 1987. Artemisinin, a constituent of annual wormwood (Artemisia annua), is a selective phytotoxin. Weed Sci. 35:499505.Google Scholar
Edwards, J. V., Dailey, O. D., Bland, J. M., and Cutler, H. G. 1988. Approaches to structure-function relationships for naturally occurring cyclic peptides. Am. Chem. Soc. Symp. Ser. 380:3556.Google Scholar
Endo, Y., Hayashi, H., Sato, T., Maruno, M., Ohta, T., and Nozoe, S. 1994. Confluentic acid and 2'-O-methylperlatolic acid, monoamine oxidase B inhibitors in a Brazilian plant, Himatanthus sucuuba . Chem. Pharm. Bull. 42:11981201.CrossRefGoogle Scholar
Eussen, J. H. H. 1978. Isolation of growth inhibiting substances from alang-alang (Imperata cylindrica (L.) Beauv.). In Eussen, J.H.H., ed. Studies on the Tropical Weed Imperata cylindrica (L.) var. major. Paper No. 7. Utrecht, The Netherlands: Drukkerij Elinkwijk BV.Google Scholar
Eussen, J. H. H. and Soerjani, M. 1978. Allelopathic activity of alang-alang (Imperata cylindrica (L.) Beauv.), isolation of growth regulating substances from leaves. In Eussen, J.H.H., ed. Studies on the Tropical Weed Imperata cylindrica (L.) Beauv. var. major. Paper No. 6. Utrecht, The Netherlands: Drukkerij Elinkwijk BV.Google Scholar
Farnsworth, N. R. 1990. The role of ethnopharmacology and the search for new drugs. Pages 221 In Chadwick, J. and Marsh, J., eds. Bioactive Compounds from Plants. Chicester, U.K.: J. Wiley.Google Scholar
Felske, A., Rheims, H., Wolternick, A., Stackebrandt, E., and Akkermans, A. D. 1997. Ribosome analysis reveals prominent activity of an uncultured member of the class Actinobacteria in grassland soils. Microbiology 143:29832989.CrossRefGoogle Scholar
Fields, S. C., Mireles-Lo, L., and Gerwick, B. C. 1996. Hydroxycornexistin: a new phytotoxin from Paecilomyces variotii . J. Nat. Prod. 59:698700.CrossRefGoogle Scholar
Forney, D. R. and Foy, C. L. 1985. Phytotoxicity of products from rhizospheres of a sorghum-sudangrass hybrid (S. bicolor × S. sudanese). Weed Sci. 33:597604.Google Scholar
Friedman, T. and Horowitz, M. 1971. Biologically active substances in subterranean parts of purple nutsedge. Weed Sci. 19:398401.Google Scholar
Fukushima, T., Tanaka, M., Gohbara, M., and Fujimori, T. 1998. Phytotoxicity of three lactones from Nigrospora sacchari . Phytochemistry 48:625630.CrossRefGoogle Scholar
Gerwick, B. C., Fields, S. S., Graupner, P. R., Gray, J. A., Chapin, E. L., Cleveland, J. A., and Heim, D. R. 1997. Pyridazocidin, a new microbial phytotoxin with activity in the Mehler reaction. Weed Sci. 45:654657.Google Scholar
Gonzalez, V., Nimbal, C. I., Weston, L. A., and Cheniae, G. M. 1997. Inhibition of a photosystem II electron transfer reaction by sorgoleone, a natural product. J. Agric. Food Chem. 45:14151421.CrossRefGoogle Scholar
Gough, R. E. and Carlstrom, R. 1999. Wheat gluten meal inhibits germination and growth of broadleaf and grassy weeds. HortSci. 34:269270.Google Scholar
Gressel, J. B. and Holm, L. G. 1964. Chemical inhibition of crop germination by weed seeds and the nature of inhibition by Abutilon theophrasti . Weed Res. 4:4453.CrossRefGoogle Scholar
Hall, A. B., Blum, U., and Fites, R. C. 1982. Stress modification of allelopathy of Helianthus annuus L. debris on seed germination. Am. J. Bot. 69:776783.Google Scholar
Harlan, J. 1992. Crops and Man. Madison, WI: American Society of Agronomy and American Crop Science Society. p. 41.Google Scholar
Heisey, R. 1990. Allelopathic and herbicidal effects of extracts from tree of heaven (Ailanthus altissima) Am. J. Bot. 77:662670.CrossRefGoogle Scholar
Heisey, R. M., Mishra, S. K., and Putnam, A. R. 1988. Production of herbicidal and insecticidal metabolites by soil microorganisms. Am. Chem. Soc. Symp. Ser. 380:6878.Google Scholar
Hilton, J. L. 1979. Research on the physiology and biology of weeds. Weeds Today 10 (4): 56.Google Scholar
Hoagland, R. E. 2001. Bioherbicides: phytotoxic natural products. Amer. Chem. Soc. Symp. Ser. 774:7290.Google Scholar
Hoagland, R. E. and Cutler, S. J. 2000. Plant and microbial compounds as herbicides. Pages 7399 In Narwal, S. S., Hoagland, R. E., Dilday, R. H., and Reigosa, M. J., eds. Allelopathy in Ecological Agriculture and Forestry. Amsterdam: Kluwer Academic Publishers.CrossRefGoogle Scholar
Hoffman, J. C. and Vaughn, K. C. 1994. Mitotic disrupter herbicides act by a single mechanism but vary in efficacy. Protoplasma 179:1625.CrossRefGoogle Scholar
Hook, D. J., Pack, E. J., Yacobucci, J. J., and Guss, J. 1997. Approaches to automating the dereplication of bioactive natural products—the key step in high throughput screening of bioactive materials from natural sources. J. Biomol. Screening 2:145152.CrossRefGoogle Scholar
Horowitz, M. and Friedman, T. 1971. Biological activity of subterranean residues of Cynodon dactylon L., Sorghum halepense L., and Cyperus rotundus L. Weed Res. 11:8893.CrossRefGoogle Scholar
Igarashi, M., Kinoshita, N., Ikeda, T., Kameda, M., Hamada, M., and Takeuchi, T. 1997. Resormycin, a novel herbicidal and antifungal antibiotic produced by a strain of Streptomyces platensis . I. Taxonomy, production, isolation and biological properties. J. Antibiot. 50:10201025.Google ScholarPubMed
Imbert, T. F. 1998. Discovery of podophyllotoxins. Biochimie 80:207222.CrossRefGoogle Scholar
Jelenska, J., Crawford, M. J., Harb, O. S., Zuther, E., Haselkorn, R., Roos, D. S., and Gornicki, P. 2001. Subcellular localization of acetyl-CoA carboxylase in the apicomplexan parasite Toxoplasma gondii . Proc. Natl. Acad. Sci. 98:27232728.CrossRefGoogle Scholar
Jomaa, H., Wiesner, J., Sanderbrand, S., et al. 1999. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:15731576.CrossRefGoogle ScholarPubMed
Kastanias, M. A. and Chrysayi-Tokousbalides, M. 2000. Herbicidal potential of pyrenophorol isolated from a Dreschlera avenae pathotype. Pest Manag. Sci. 56:227232.3.0.CO;2-A>CrossRefGoogle Scholar
Kati, V. and Froud-Williams, R. J. 1999. Studies on allelopathic potential of various cereal cultivars on selected test species. Brighton Crop Prot. Conf., Weeds 2:579580.Google Scholar
Kossanel, J. P., Martin, J., Annelle, P., Peinot, M., Vallet, J. K., and Kurnej, K. 1977. Inhibition of growth of young radicles of maize by exudations in culture solutions and extracts of ground roots of Chenopodium album L. Pages 7786 In Grodzinsky, A. M., ed. Interactions of Plants and Microorganisms in Phytocenoses. Kiev: Naukova Dumka. [In Russian]Google Scholar
Lang-Unnasch, N., Reith, M. E., Munholland, J., and Barta, J. R. 1998. Plastids are widespread and ancient in parasites of the phyllum Apicomplexa. Int. J. Parasitol. 28:17431754.CrossRefGoogle Scholar
Lasceve, G. and Gaugain, F. 1990. Effects of usnic acid on sunflower and maize plantlets. J. Plant Physiol. 136:723727.CrossRefGoogle Scholar
Lehnen, L. P. Jr., Vaughan, M. A., and Vaughn, K. C. 1990. Terbutol affects spindle microtubule organizing centres. J. Exp. Bot. 41:537546.CrossRefGoogle Scholar
Lehnen, L. P. Jr. and Vaughn, K. C. 1992. The herbicide sindone B disrupts spindle microtubule organizing centers. Pestic. Biochem. Physiol. 44:5059.CrossRefGoogle Scholar
Le Tourneau, D., Failes, G. D., and Heggeness, H. G. 1956. The effect of aqueous extracts of plant tissue on germination of seeds and growth of seedlings. Weeds 4:363368.CrossRefGoogle Scholar
Liebermann, B., Ellinger, R., and Pinet, E. 1996. Isotentoxin, a conversion product of the phytotoxin tentoxin. Phytochemistry 42:15371540.CrossRefGoogle Scholar
Lin, W. X., Kim, K. U., and Shin, D. H. 2000. Rice allelopathic potential and its modes of action on barnyardgrass (Echinochloa crus-galli). Allelopathy J. 7:215224.Google Scholar
Lin, L.-J., Peiser, G., Ying, B.-P., Mathias, K., Karasina, F., Wang, Z., Itatani, J., Green, L., and Hwang, Y.- S. 1995. Identification of plant growth inhibitory principles in Alianthus altissima and Castela tortuosa . J. Agric. Food Chem. 43:17081711.CrossRefGoogle Scholar
Lindon, J. C., Nicholson, J. K., and Ian, D. 1996. The development and application of coupled HPLC-NMR spectroscopy. Adv. Chromatogr. 124:315382.Google Scholar
Liu, D. L. and Christians, N. E. 1994a. Herbicidal activity of a hydrolysed corn gluten meal on three grass species under controlled environments. J. Plant Growth Regul. 13:221226.CrossRefGoogle Scholar
Liu, D. L. and Christians, N. E. 1994b. Isolation and identification of root-inhibiting compounds from corn gluten hydrolysate. J. Plant Growth Regul. 13:227230.CrossRefGoogle Scholar
Liu, D. L. and Christians, N. E. 1996. Bioactivity of a pentapeptide isolated from corn gluten hydrolysate on Lolium perenne . L. J. Plant Growth Regul. 15:1317.CrossRefGoogle Scholar
Liu, D. L. and Christians, N. E. 1997. Inhibitory activity of corn gluten hydrolyszate on monocotyledonous species. HortSci. 32:243245.Google Scholar
Lucena, J. M. and Doll, J. 1976. Efectos inhibidores de crecimiento del coquito (Cyperus rotundus L.) sobre sorgo y soya. Rev. Comalfi 3:241256.Google Scholar
Lydon, J. and Duke, S. O. 1999. Inhibitors of glutamine biosynthesis. Pages 445463 In Singh, B. K., ed. Plant Amino Acids: Biochemistry and Biotechnology. New York: Marcel Dekker.Google Scholar
Macias, F. A., Ascension, T., Molinillo, J. M. G., Valera, R. M., and Castellano, D. 1996. Potential allelopathic sesquiterpene lactones from sunflowers leaves. Phytochemistry 43:12051215.CrossRefGoogle Scholar
Macias, F. A., Molinillo, J. M. G., Galindo, J. C., Varela, R. M., Simonet, A. M., and Castellano, D. 2001. The use of allelopathic studies in the search for natural herbicides. J. Crop Prod. 4:237255.CrossRefGoogle Scholar
Macias, F. A., Varela, R. M., Torres, A., and Molinillo, J. G. M. 1999. Potential of cultivar sunflowers (Helianthus annuus L.) as a source of natural herbicidal templates. Pages 531550 In Inderjit, , Dakshiny, K.M.M., and Foy, C. L., eds. Principles and Practice in Plant Ecology. Boca Raton, FL: CRC Press.Google Scholar
Mitchell, G., Bartlett, D. W., Fraser, T. E. M., Hawkes, T. R., Holt, D. C., Towson, J. K., and Wichert, R. A. 2001. Mesotrione: a new selective herbicide for use in maize. Pest. Manag. Sci. 57:120128.3.0.CO;2-E>CrossRefGoogle Scholar
Morré, D. J., Grieco, P. A., and Morré, D. M. 1998. Mode of action of the anticancer quassinoids—inhibition of the plasma membrane NADH oxidase. Life Sci. 63:595604.CrossRefGoogle ScholarPubMed
Narwal, S. S. 2000. Weed management in rice-wheat rotation by allelopathy. Crit. Rev. Plant Sci. 19:249260.CrossRefGoogle Scholar
Narwal, S. S., Singh, T., Hooda, J. S., and Kathuria, M. K. 1999. Allelopathic effect of sunflower on succeeding summer crops. 1. Field studies and bioassays. Allelopathy J. 6:3548.Google Scholar
Neale, M. 2000. The regulation of natural products as crop-protection agents. Pest Manag. Sci. 56:677680.3.0.CO;2-X>CrossRefGoogle Scholar
Netzly, D. H. and Butler, L. G. 1986. Root of sorghum exude hydrophobic droplets containing biologically active components. Crop Sci. 26:775778.CrossRefGoogle Scholar
Netzly, D. H., Riopel, J. L., Ejeta, G., and Butler, L. G. 1988. Germination stimulants of witchweed (Striga asiatica) from hydrophobic root exudate of sorghum (Sorghum bicolor). Weed Sci. 36:441446.Google Scholar
Nimbal, C. I., Pedersen, J., Yerkes, C. N., Weston, L. A., and Weller, S. C. 1996. Activity and distribution of sorgoleone in grain sorghum germplasm. J. Agric. Food Chem. 44:13431347.CrossRefGoogle Scholar
Oliva, A., Moraes, R. M., Watson, S. B., Duke, S. O., and Dayan, F. E. 2002. Aryltetralin lignans inhibit plant growth by affecting the formation of mitotic microtubular organizing centers. Pestic. Biochem. Physiol. 72:4554.CrossRefGoogle Scholar
Olofsdotter, M., Navarez, D., Rebulanan, M., and Streibig, J. C. 1999. Weed suppressing rice cultivars—does allelopathy play a role? Weed Res. 39:441454.CrossRefGoogle Scholar
Pachlatko, J. P. 1998. Natural products in crop protection. Chimia 52:2947.Google Scholar
Paerl, H. W. and Tucker, C. S. 1995. Ecology of blue-green algae in aquaculture ponds. J. World Aquacult. Soc. 26:109131.CrossRefGoogle Scholar
Parenti, L. R. and Rice, E. L. 1969. Inhibitional effects of Digitaria sanguinalis and possible role in old-field succession. Bull. Torrey Bot. Club 96:7078.CrossRefGoogle Scholar
Patrick, Z. A. and Koch, L. W. 1958. Inhibition of respiration, germination, and growth by substances arising during decomposition of certain plant residues in soil. Can. J. Bot. 36:621647.CrossRefGoogle Scholar
Patrick, Z. A. and Koch, L. W. 1963. The adverse influence of phytotoxic substances from decomposing plant residues on resistance of tobacco to black root rot. Can. J. Bot. 41:747758.CrossRefGoogle Scholar
Pereda-Miranda, R., Mata, R., Anaya, A. L., Wickramaratne, D. B. M., Pezzuto, J. M., and Kinghorn, A. D. 1993. Tricolorin A, major phytogrowth inhibitor from Ipomoea tricolor . J. Nat. Prod. 56:571582.CrossRefGoogle ScholarPubMed
Pezzuto, J. M., Beecher, C. W. W., Fong, H. H. S., et al. 1998. Recent studies on biologically active natural products. Pages 94107 In Attaur-Rahman, and Choudhary, M. I., eds. New Trends in Natural Products Chemistry. The Netherlands: Hardwood Academic Publishers.Google Scholar
Pillinger, J. M., Cooper, J. A., and Ridge, I. 1994. Role of phenolic compounds in the antialgal activity of barley straw. J. Chem. Ecol. 20:15571569.CrossRefGoogle ScholarPubMed
Pillmoor, J. B. 1998. Carbocyclic coformycin: a case study of the opportunities and pitfalls in the industrial search for new agrochemicals from nature. Pestic. Sci. 52:7580.3.0.CO;2-P>CrossRefGoogle Scholar
Pimm, S. L., Russell, G. J., Gittleman, J. L., and Brooks, T. M. 1995. The future of biodiversity. Science 269:347350.CrossRefGoogle ScholarPubMed
Qasem, J. R. 1995. Allelopathic effects of Amaranthus retroflexus L. and Chenopodium murale L. on vegetable crops. Allelopathy J. 2:4956.Google Scholar
Renner, S. S. and Ricklefs, R. E. 1998. Herbicidal activity of domatia-inhabiting ants in patches of Tococa guianenesis and Clidemia heterophylla . Biotropica 30:324327.CrossRefGoogle Scholar
Rice, E. L. 1964. Inhibition of nitrogen-fixing and nitrifying bacteria by seed plants. I. Ecology 45:824837.CrossRefGoogle Scholar
Rice, E. L. 1984. Allelopathy. Orlando, FL: Academic Press. 422 p.Google Scholar
Rice, M. J., Legg, M., and Powell, K. A. 1998. Natural products in agriculture—a view from the industry. Pestic. Sci. 52:184188.3.0.CO;2-P>CrossRefGoogle Scholar
Rimando, A. M., Dayan, F. E., Czarnota, M. A., Weston, L. A., and Duke, S. O. 1998. A new photosystem II electron transfer inhibitor from Sorghum bicolor . J. Nat. Prod. 61:927930.CrossRefGoogle ScholarPubMed
Rimando, A. M., Dayan, F. E., Mikell, J. R., and Moraes, R. M. 1999. Phytotoxic lignans of Leucophyllum frutescens . Nat. Toxins 7:3943.3.0.CO;2-2>CrossRefGoogle Scholar
Rimando, A. M., Olofsdotter, M., Duke, S. O., and Dayan, F. E. 2001. Searching for rice allelochemicals: an example of bioassay-guided isolation. Agron. J. 93:1620.CrossRefGoogle Scholar
Roberts, R., Roberts, C. W., Johnson, J. J., et al. 1999. Evidence for the shikimate pathway in apicomplexan parasites. Nature 393:801805.Google Scholar
Rojas, I. S., Lotina-Hennsen, B., and Mata, R. 2000. Effect of lichen metabolites on thylakoid electron transport and photophosphorylation in isolated spinach chloroplasts. J. Nat. Prod. 63:13961399.CrossRefGoogle ScholarPubMed
Romagni, J. G., Duke, S. O., and Dayan, F. E. 2000a. Inhibition of plant asparagine synthetase by monoterpene cineoles. Plant Physiol. 123:725732.CrossRefGoogle ScholarPubMed
Romagni, J. G., Meazza, G., Nanyakkara, N. P. D., and Dayan, F. E. 2000b. The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p-hydroxyphenylpyruvate dioxygenase. FEBS Lett. 480:301305.CrossRefGoogle ScholarPubMed
Saxena, S. and Pandey, A. K. 2001. Microbial metabolites as eco-friendly agrochemicals. Appl. Microbiol. Biotechnol. 55:395403.CrossRefGoogle ScholarPubMed
Schrader, K. K., Dayan, F. E., Allen, S. N., de Regt, M. Q., Tucker, C. S., and Paul, R. N. Jr. 2000a. 9,10-Anthraquinone reduces the photosynthetic efficiency of Oscillatoria perornata and modifies cellular inclusions. Int. J. Plant Sci. 161:265270.CrossRefGoogle ScholarPubMed
Schrader, K. K., de Regt, M. Q., Tidwell, P. D., Tucker, C. S., and Duke, S. O. 1998a. Compounds with selective toxicity towards the off-flavor metabolite-producing cyanobacterium Oscillatoria cf. chalybea . Aquaculture 163:8599.CrossRefGoogle Scholar
Schrader, K. K., de Regt, M. Q., Tidwell, P. R., Tucker, C. S., and Duke, S. O. 1998b. Selective growth inhibition of the musty-odor producing cyanobacterium Oscillatoria cf. chalybea by natural compounds. Bull. Environ. Contam. Toxicol. 60:651658.CrossRefGoogle ScholarPubMed
Schrader, K. K., Duke, S. O., Kingsbury, S. K., Tucker, C. S., Duke, M. V., Dionigi, C. P., Millie, D. F., and Zimba, P. V. 2000b. Evaluation of ferulic acid for controlling the musty-odor cyanobacterium, Oscillatoria perornata, in aquaculture ponds. J. Appl. Aquacult. 10:116.CrossRefGoogle Scholar
Schrader, K. K. and Harries, M. D. 2001. Compounds with selective toxicity toward the musty-odor cyanobacterium Oscillatoria perornata . Bull. Environ. Contam. Toxicol. 66:801807.Google ScholarPubMed
Schumacher, W. J., Thill, D. C., and Lee, C. A. 1982. The allelopathic potential of wild oat (Avena fatua L.) on spring wheat (Triticum aestivum L.) growth. Urbana-Champaign, IL: North American Symposium on Allelopathy, November 14–17, 1982. [Abstract]Google Scholar
Singh, S. P. 1968. Presence of a growth inhibitor in the tubers of nutgrass (Cyperus rotundus L.). Proc. Indian Acad. Sci. 67:1823.Google Scholar
Sugawara, F. 2000. Phytotoxins as potential herbicides. Pages 113128 In Narwal, S. S., Hoagland, R. E., Dilday, R. H., and Reigosa, M. J., eds. Allelopathy in Ecological Agriculture and Forestry. Amsterdam: Kluwer Acadamic Publishers.CrossRefGoogle Scholar
Tanaka, T., Fukushima, T., Tsujino, Y., and Fujimori, T. 1997. Nigrosporins A and B, new phytotoxic and antibacterial metabolites producted by a fungus Nigrospora oryzae . Biosci. Biotech. Biochem. 61:18481852.CrossRefGoogle Scholar
Tanaka, T., Hatano, K., and Watanabe, M. 1996. Isolation, purification and identification of 2,5-anhydro-D-glucitol as a phytotoxin from Fusarium solani . J. Nat. Toxins 5:317329.Google Scholar
ten Kate, K. and Laird, S. A. 1999. The Commercial Use of Biodiversity. Access to Genetic Resources and Benefit-Sharing. London: Earthscan Publications. pp. 1333.Google Scholar
Tinnin, R. and Muller, C. 1971. The allelopathic potential of Avena fatua: influence on herb distribution. Bull. Torrey Bot. Club 98:243250.CrossRefGoogle Scholar
Tucker, C. S. and Lloyd, S. W. 1987. Evaluation of potassium ricinoleate as a selective blue-green algicide in channel catfish ponds. Aquaculture 65:141148.CrossRefGoogle Scholar
Unruh, J. B., Christians, N. E., and Homer, H. T. 1997a. Herbicidal effects of the dipeptide, alaninyl-alanine, on perennial ryegrass (Lolium perenne L.) seedlings. Crop Sci. 37:208211.CrossRefGoogle Scholar
Unruh, J. B., Christians, N. E., and Homer, H. T. 1997b. Mitotic and ultrastructure changes in root meristems of grass seedlings treated with alaninyl-alanine. Crop Sci. 37:18701874.CrossRefGoogle Scholar
Van Aller, R. T. and Pessoney, G. F. 1982. USM algal research team makes major off-flavor/water quality discovery. Aquacult. Mag. 8:1822.Google Scholar
Van Aller, R. T., Pessoney, G. F., Rogers, V. A., Watkins, E. G., and Leggett, H. G. 1985. Oxygenated fatty acids: a class of allelochemicals from aquatic plants. ACS Symp. Ser. 268:387400.CrossRefGoogle Scholar
van der Ploeg, M., Tucker, C. S., and Boyd, C. E. 1992. Geosmin and 2-methylisoborneol production by cyanobacteria in fish ponds in the southeastern United States. Water Sci. Technol. 25:283290.Google Scholar
Vaughan, M. A. and Vaughn, K. C. 1988. Mitotic disrupters from plants and their potential use as herbicides. Weed Technol. 2:533539.Google Scholar
Vaughan, M. A. and Vaughn, K. C. 1990. DCPC causes cell plate disruption in wheat roots. Ann. Bot. 65:379388.CrossRefGoogle Scholar
Vaughn, S. F. and Berhow, M. A. 1998. 1-Cyano-2-hyrdroxy-3-butene, a phytotoxin from crambe (Crambe abyssinica) seedmeal. J. Chem. Ecol. 24:11171126.CrossRefGoogle Scholar
Vaughn, S. F., Boydston, R. A., and Mallory-Smith, C. A. 1996. Isolation and identification of (3-methoxyphenyl)acetonitrile as a phytotoxin from meadowfoam (Limnanthe alba) seedmeal. J. Chem. Ecol. 22:19391949.CrossRefGoogle ScholarPubMed
Velu, G. and Aruna, R. 1996. Allelopathic impact of purple nutsedge (Cyperus rotundus) and bermuda grass (Cynodon dactylon) on soybean (Glycine max). Indian J. Agric. Sci. 66:363365.Google Scholar
Waller, G. 1987. Allelochemicals: Role in Agriculture and Forestry. Washington: ACS Symposium Series 330. 606 p.CrossRefGoogle Scholar
Welch, I. M., Barrett, P. R. F., Gibson, M. T., and Ridge, I. 1990. Barley straw as an inhibitor of algal growth I: studies in the Chesterfield Canal. J. Appl. Phycol. 2:231239.CrossRefGoogle Scholar
Weston, L. 1996. Utilization of allelopathy for weed management in agro-ecosystems. Agron. J. 88:860866.CrossRefGoogle Scholar
Weston, L. A., Nimbal, C. I., and Jeandet, P. 1999. Allelopathic potential of grain sorghum (Sorghum bicolor (L.) Moench) and related species. Pages 467478 In Inderjit, , Dakshiny, K.M.M., and Foy, C. L., eds. Principles and Practice in Plant Ecology. Boca Raton, FL: CRC Press.Google Scholar
Wibiwo, D. N. 1996. Effect of root and shoot extracts of purple nutsedge (Cyperus rotundus L.) at different concentrations on root nodule formation, growth, and yield of soybean (Glycine max (L.) Merr.). Pages 139147 In Proceedings of the Symposium on Biology and Management of Weeds and fourth Tropical Weed Science Conference, 1994. Bogor, Indonesia: SEAMEO BIOTROP Special Publication No. 58.Google Scholar
Williams, J. T. 1964. A study of the competitive ability of Chenopodium album L. Weed Res. 4:283295.CrossRefGoogle Scholar
Willis, R. J. 2000. Juglans spp. juglone and allelopathy. Allelopathy J. 7:155.Google Scholar
Wills, G. D., Tucker, C. S., and Jones, E. J. 1999. Effect of barley straw for the control of off-flavor in pond-raised catfish. Proc. South. Weed Sci. Soc. 52:227230.Google Scholar
Yoneyama, K., Saruta, T., Ogasawara, M., Konnai, M., Asami, T., Abe, T., and Yoshida, S. 1996. Effects of grandinol and related phloroglucinol derivatives on transpiration and stomatal closure. Plant Growth Regul. 19:711.CrossRefGoogle Scholar
Young, C. C. 1986. Autointoxication of Asparagus officinalis L. Pages 171188 In Putnam, A. and Tang, C. S., eds. The Science of Allelopathy. New York: Wiley Interscience.Google Scholar
Zeidler, J., Schwender, J., Muller, C., Wiesner, J., Weidemeyer, C., Beck, E., Jomaa, H., and Lichtenthaler, H. K. 1998. Inhibition of the nonmevalonate 1-deoxy-D-xylulose 5-phosphate pathway of plant isoprenoid biosynthesis by fosmidomycin. Z. Naturforsch. 53c:980986.Google Scholar
Cited by