Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-07T15:00:24.088Z Has data issue: false hasContentIssue false

Antagonism of Diclofop Control of Wild Oat (Avena fatua) by Tribenuron

Published online by Cambridge University Press:  12 June 2017

Roger J. Baerg
Affiliation:
Univ. of Idaho, Aberdeen, ID 83210
John W. Gronwald
Affiliation:
Plant Sci. Res. Unit, U.S. Dep. Agric., Agric. Res. Serv.
Charlotte V. Eberlein
Affiliation:
Univ. of Idaho, Aberdeen, ID 83210
Robert E. Stucker
Affiliation:
Dep. of Agron. and Plant Genetics, Univ. of Minnesota, St. Paul, MN 55108

Abstract

Tribenuron antagonized diclofop control of wild oat in greenhouse studies. Wild oat shoot fresh weight was reduced 79% when plants were treated with diclofop at 1.12 kg ha−1, but only 46% when treated with diclofop at 1.12 kg ha−1plus tribenuron at 18 g ha−1. Increasing diclofop rate increased control of wild oat but did not overcome the antagonism. Separating the applications of diclofop and tribenuron by as little as 12 s reduced the antagonism by 40%, indicating the importance of close proximity of the two herbicides on the leaf surface for the antagonistic response. The inhibitory effect of diclofop at its target site (acetylCoA carboxylase) was not reduced by tribenuron. Metabolism of 14C-diclofop by wild oat leaves was not altered quantitatively or qualitatively by tribenuron. Tribenuron had no effect on spray retention or absorption of 14C-diclofop by wild oat leaves, and only slightly decreased the total amount of radiolabel translocated out of the treated zone on the leaf. However, tribenuron decreased basipetal translocation of diclofop from the treated zone by approximately 20%. The ability of tribenuron to reduce basipetal translocation of diclofop to meristematic regions of wild oat may be a factor in antagonism.

Type
Physiology, Chemistry, and Biochemistry
Copyright
Copyright © 1996 by the Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

1. Bestman, H. D., Devine, M. D., and Vanden Born, W. H. 1990. Herbicide chlorsulfuron decreases assimilate transport out of treated leaves of field pennycress (Thlaspi arvense L.) seedlings. Plant Physiol. 93: 14411448.Google Scholar
2. Betts, K. J., Ehlke, N. J., Wyse, D. L., Gronwald, J. W., and Somers, D. A. 1992. Mechanism of inheritance of diclofop resistance in Italian ryegrass (Lolium multiflorum). Weed Sci. 40: 184189.Google Scholar
3. Bjelk, L. A. and Monaco, T. J. 1992. Effect of chlorimuron and quizalofop on fatly acid biosynthesis. Weed Sci. 40: 16.Google Scholar
4. Boldt, P. F. and Putnam, A. R. 1981. Selectivity mechanisms for foliar applications of diclofop-methyl. II. Metabolism. Weed Sci. 29: 237241.Google Scholar
5. Burton, J. D., Gronwald, J. W., Somers, D. A., Gengenbach, B. G., and Wyse, D. L. 1989. Inhibition of corn acetylCoA carboxylase by cyclohexanedione and aryloxyphenoxypropionate herbicides. Pestic. Biochem. Physiol. 34: 7685.Google Scholar
6. Chaleff, R. S. and Mauvais, C. J. 1984. Acetolactate synthase is the site of action of two sulfonylurea herbicides in higher plants. Science 224: 14431445.Google Scholar
7. Chow, P. N. P. 1988. Effect of chlorsulfuron on four graminicides for weed control and wheat yield. Weed Res. 28: 145150.Google Scholar
8. Croon, K. A., Ketchersid, M. C., and Merkle, M. G. 1989. Effect of bentazon, imazaquin, and chlorimuron on the absorption and translocation of the methyl ester of haloxyfop. Weed Sci. 37: 645650.Google Scholar
9. Devine, M. D., Bestman, H. D., and Vanden Born, W. H. 1990. Physiological basis for the different phloem mobilities of chlorsulfuron and clopyralid. Weed Sci. 38: 19.Google Scholar
10. Devine, M. D. and Rashid, A. 1993. Antagonism of tralkoxydim activity in Avena fatua by metsulfuron methyl. Weed Res. 33: 97104.Google Scholar
11. Donald, W. W. and Shimabukuro, R. H. 1980. Selectivity of diclofop-methyl between wheat and wild oat: Growth and herbicide metabolism. Physiol. Plant. 49: 459464.Google Scholar
12. Durgan, B. R., Miller, D. W., and Holder, B. 1989. Broadleaf weed control in spring wheat at Crookston, MN. North Central Weed Sci. Soc. Rep. 46: 132.Google Scholar
13. Eberlein, C. V., Miller, T. L., and Wiersma, J. V. 1988. Influence of thiameturon and DPX-L5300 on wild oats (Avena fatua) control with barban, diclofop, AC 222, 293, and difenzoquat. Weed Sci. 36: 792799.Google Scholar
14. Ferreira, K. L. and Coble, H. D. 1994. Effect of DPX-PE350 on the efficacy of graminicides. Weed Sci. 42: 222226.Google Scholar
15. Gronwald, J. W. 1991. Lipid Biosynthesis Inhibitors. Weed Sci. 39: 435449.Google Scholar
16. Hall, L. M. and Devine, M. D. 1993. Chlorsulfuron inhibition of phloem translocation in chlorsulfuron-resistant and -susceptible Arabidopsis thaliana . Pestic. Biochem. Physiol. 45: 8190.Google Scholar
17. Hall, C., Edgington, L. V., and Switzer, C. M. 1982. Effects of chlorsulfuron or 2,4-D upon diclofop-methyl efficacy in oat (Avena saliva). Weed Sci. 30: 672676.Google Scholar
18. Harker, K.N. and Blackshaw, R. E. 1991. Influence of growth stage and broadleaf herbicides on tralkoxydim activity. Weed Sci. 39: 650659.Google Scholar
19. Hendley, P., Dicks, J. W., Monaco, T. J., Slyfield, S. M., Tummon, O. J., and Barrett, J. C. 1985. Translocation and metabolism of pyridinyloxyphenoxypropionate herbicides in rhizomatous quackgrass (Agropyron repens). Weed Sci. 33: 1124.Google Scholar
20. Liebl, R. and Worsham, A. D. 1987. Effect of chlorsulfuron on diclofop phototoxicity to Italian ryegrass (Lolium multiflorum). Weed Sci. 35: 383387.Google Scholar
21. Liebl, R. and Worsham, A. D. 1987. Effect of chlorsulfuron on the movement and fate of diclofop in Italian Ryegrass (Lolium multiflorum) and wheat (Triticum aestivum). Weed Sci. 35: 623628.Google Scholar
22. McFadden, J. J., Frear, D. S., and Mansagar, E. R. 1989. Aryl hydroxylation of diclofop by a cytochrome P450 monooxygenase from wheat. Pestic. Biochem. Physiol. 34: 92100.Google Scholar
23. Minton, B. W., Kurtz, M. E., and Shaw, D. R. 1989. Barnyardgrass (Echinochloa crus-galli) control with grass and broadleaf weed herbicide combinations. Weed Sci. 37: 223227.Google Scholar
24. Minton, B. W., Shaw, D. R., and Kurtz, M. E. 1989. Postemergence grass and broadleaf herbicide interactions for red rice (Oryza sativa) control in soybeans (Glycine max). Weed Technol. 3: 329334.Google Scholar
25. Montgomery, D. C. 1984. Fitting response curves and surfaces. Pages 343345 in Design and Analysis of Experiments. John Wiley and Sons, New York.Google Scholar
26. Myers, P. F. and Coble, H. D. 1992. Antagonism of graminicide activity on annual grass species by imazethapyr. Weed Technol. 6: 333338.Google Scholar
27. Olson, W. A. and Nalewaja, J. D. 1982. Effect of MCPA on 14C- diclofop uptake and translocation. Weed Sci. 30: 5963.Google Scholar
28. O'Sullivan, P. A. and Kirkland, K. J. 1984. Chlorsulfuron reduced control of wild oat (Avena fatua) with diclofop, difenzoquat, and flamprop. Weed Sci. 32: 285289.Google Scholar
29. Qureshi, F. A. and Vanden Born, W. H. 1979. Split applications and tank mix combinations of diclofop-methyl and MCPA for weed control in barley. Can. J. Plant Sci. 59: 8792.Google Scholar
30. Shimabukuro, R. H., Walsh, W. C., and Hoerauf, R. A. 1979. Metabolism and selectivity of diclofop-methyl in wild oat and wheat. J. Agric. Food Chem. 27: 615623.Google Scholar
31. Smith, P. K., Krohn, R. I., Hermanson, G. T., Mallia, A. K., Gartner, F. H., Provenzano, M. D., Fujimoto, E. K., Goeke, N. M., Olson, B. J., and Klenk, D. C. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem 150: 7685.Google Scholar
32. Todd, B. G. and Stobbe, E. H. 1977. Selectivity of diclofop-methyl among wheat, barley, wild oat (Avena fatua) and green foxtail (Setaria viridis). Weed Sci. 25: 382385.Google Scholar
33. Vidrine, P. R. 1989. Johnsongrass (Sorghum halepense) control in soybeans (Glycine max) with postemergence herbicides. Weed Technol. 3: 455458.Google Scholar