Skip to main content Accessibility help
Hostname: page-component-559fc8cf4f-9dmbd Total loading time: 0.213 Render date: 2021-03-05T08:15:43.444Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Article contents

Alachlor and metolachlor transformation pattern in corn and soil

Published online by Cambridge University Press:  20 January 2017

Jolene Baumgartner Unland
Dow AgroSciences LLC, 9330 Zionsville Road, Indianapolis, IN 46268
Brian L. S. Olson
NW Area Extension Office, Kansas State University, Colby, KS 67701-0786
David W. Graham
Department of Civil and Environmental Engineering, University of Kansas, Lawrence, KS 66045
E-mail address:


Experiments were conducted in a growth chamber to study alachlor and metolachlor metabolism in soil and corn and to determine if alachlor and metolachlor and their metabolites are exuded from corn roots to the growth medium. Alachlor was more readily absorbed by corn than was metolachlor. The absorption of alachlor and metolachlor was 72 and 55%, respectively, 10 d after seedling emergence (DAE). Alachlor and metolachlor were rapidly metabolized in corn, although metabolism rates were higher with metolachlor than with alachlor. Ten similar alachlor metabolites were detected in roots and shoots. In addition, two metabolites were detected only in the shoots, and one metabolite was detected only in the roots. Metolachlor metabolism in corn produced fewer metabolites than did alachlor metabolism. At 5 DAE, 10 and 9 metabolites were detected in shoots and roots, respectively. The metabolism of alachlor and metolachlor in soil showed patterns similar to the metabolism in corn but produced fewer metabolites. One unique alachlor metabolite appeared in soil but not in corn. Roots of corn seedlings treated with 14C-alachlor or 14C-metolachlor released significant amounts of radioactivity to the surrounding growth medium 5 d after treatment. Plants treated with alachlor released more radioactivity than did plants treated with metolachlor.

Research Article
Copyright © Weed Science Society of America 

Access options

Get access to the full version of this content by using one of the access options below.


Aga, D. S., Thurman, E. M., and Pomes, M. L. 1996. Identification of new sulfonic acid metabolite of metolachlor in soil. Environ. Sci. Technol. 30:592597.CrossRefGoogle Scholar
Ahrens, W. H. ed. 1994. Herbicide Handbook. 7th ed. Champaign, IL: Weed Science Society of America. pp. 912, 197–200.Google Scholar
Armstrong, T. F., Meggitt, W. F., and Penner, D. 1973. Absorption, translocation, and metabolism of alachlor by yellow nutsedge. Weed Sci. 4:357360.Google Scholar
Bouchard, D. C., Lavy, T. L., and Marx, D. B. 1982. Fate of metribuzin, metolachlor, and fluometuron in soil. Weed Sci. 30:629632.Google Scholar
Braverman, M. P., Lavy, T. L., and Marx, D. B. 1986. The degradation and bioactivity of metolachlor in soil. Weed Sci. 34:479484.Google Scholar
Breaux, E. J., Patanella, J. E., and Sanders, E. F. 1987. Chloroacetanilide herbicide selectivity: analysis of glutathione and homoglutathione in tolerant, susceptible, and safened seedlings. J. Agric. Food Chem. 35:474478.CrossRefGoogle Scholar
Chesters, G., Simsiman, G. V., Lavy, J., Alhajjar, B. J., Rathulla, R. N., and Harkin, J. M. 1989. Environmental fate of alachlor and metolachlor. Rev. Environ. Contam. Toxicol. 110:174.Google ScholarPubMed
Cottingham, C. K. and Hatzios, K. K. 1992. Basis of differential tolerance of two corn hybrids (Zea mays) to metolachlor. Weed Sci. 40:359363.Google Scholar
Dixon, G. A. and Stoller, E. W. 1982. Differential toxicity, absorption, translocation, and metabolism in corn (Zea mays) and yellow nutsedge (Cyperus esculentus). Weed Sci. 30:225230.Google Scholar
Field, J. A. and Thurman, E. M. 1996. Glutathione conjugation and contaminant transformation. Environ. Sci. Technol. 30:14131418.CrossRefGoogle Scholar
Fuerst, E. P. 1987. Understanding the mode of action of the chloroacetamide and thiocarbamate herbicides. Weed Technol. 1:270277.CrossRefGoogle Scholar
Graham, D. W., Miley, K., deNoyelles, F., Smith, V. H., Thurman, M., and Carter, R. 2000. Alachlor transformation patterns in aquatic field microcosms under variable oxygen and nutrient conditions. Water Res. 34:40544062.CrossRefGoogle Scholar
Graham, W. J., Graham, D. W., deNoyelles, F., Smith, V. H., Larive, C. K., and Thurman, E. M. 1999. Metolachlor and alachlor breakdown product formation patterns in aquatic field microcosms. Environ. Sci. Technol. 33:44714476.CrossRefGoogle Scholar
Hickman, M. V., Messersmith, C. G., and Lym, R. G. 1989. Picloram release from leafy spurge (Euphorbia esula) roots in field. Weed Sci. 37:167174.Google Scholar
Hoagland, D. R. and Arnon, D. I. 1950. The Water-Culture Method for Growing Plants Without Soil. Berkeley, CA: California Agricultural Experimental Station, Circ. 347.Google Scholar
Holden, L. R., Graham, J. A., Whitmore, R. W., Alexander, W. J., Pratt, R. W., Liddle, S. K., and Piper, L. L. 1992. Results of the national alachlor well water survey. Environ. Sci. Technol. 26:935943.CrossRefGoogle Scholar
Hurt, W. and Foy, C. L. 1965. Some factors affecting the excretion of foliarly applied dicamba and picloram from roots of black valentine beans. Plant Physiol. (Suppl.) 40:48.Google Scholar
Kolpin, D. W., Thurman, E. M., and Goolsby, D. A. 1996. Occurrence of selected pesticides and their metabolites in near-surface aquifers of the midwestern U.S. Environ. Sci. Technol. 30:335340.CrossRefGoogle Scholar
Lamoureux, G. L. and Rusness, D. G. 1983. Malonylcysteine conjugates as end-products of glutathione metabolism in plants. Pages 295300 In Miyamoto, J. and Kearney, P. C., eds. Pesticide Chemistry: Human Welfare and the Environment. New York: Pergamon Press.Google Scholar
LeBaron, H. M. and McFarland, J. E. 1988. Metolachlor. Pages 335382 In Kearney, P. C. and Kaufman, D. D., eds. Herbicides Chemistry, Degradation, and Mode of Action. Volume 3. New York: Marcel Dekker.Google Scholar
Linder, P. J., Mitchell, J. W., and Freeman, G. D. 1964. Persistence and translocation of exogenous regulating compounds that exude from roots. J. Agric. Food Chem. 12:437438.CrossRefGoogle Scholar
Lingle, S. E. and Suttle, J. C. 1985. A model system for the study of 2,4-D translocation in leafy spurge. Can. J. Plant Sci. 65:369377.CrossRefGoogle Scholar
Marrs, K. A. 1996. The functions and regulation of glutathione S-transferases in plants. Annu. Rev. Plant Physiol. 47:127158.CrossRefGoogle ScholarPubMed
National Agricultural Statistics Service. 1999. Agricultural Chemical Usage, 1998 Field Crops Summary. Washington, D.C.: U.S. Department of Agriculture, p. 140.Google Scholar
Neidermyer, R. W. and Nalewaja, J. D. 1969. Uptake, translocation and fate of 2,4-D in nightflowering catchfly and common lambsquarters. Weed Sci. 17:528532.Google Scholar
Novick, N. J., Mukherjee, R., and Alexander, M. 1986. Metabolism of alachlor and propachlor in suspensions of pretreated soils and in samples from ground water aquifers. J. Agric. Food Chem. 34:721725.CrossRefGoogle Scholar
Obrigawitch, T., Abernathy, J. R., and Gipson, J. R. 1980. Response of yellow (Cyperus esculentus) and purple (Cyprus rotundus) nutsedge to metolachlor. Weed Sci. 28:708715.Google Scholar
Olson, B. L., Al-Khatib, K., Stahlman, P., and Isakson, P. J. 2000. Efficacy and metabolism of MON 37500 in Triticum aestivum and weedy grass species as affected by temperature and soil moisture. Weed Sci. 48:541548.CrossRefGoogle Scholar
Pothuluri, J. V., Moorman, T. B., Obenhuber, D. C., and Wauchope, R. D. 1990. Aerobic and anaerobic degradation of alachlor in samples from a surface-to-groundwater profile. J. Environ. Qual. 19:525530.CrossRefGoogle Scholar
Reid, C.P.P. and Hurt, W. 1970. Root exudation of herbicides by woody plants: allelopathic implications. Nature 225:291.CrossRefGoogle Scholar
Rubin, B., Kirino, O., and Casida, J. E. 1985. Chemistry and action of N-phenylmaleamic acids and their progenitors as selective herbicide antidotes. J. Agric. Food Chem. 33:489494.CrossRefGoogle Scholar
Sharma, M. P., Chang, F. Y., and Vanden Born, W. H. 1971. Penetration and translocation of picloram in Canada thistle. Weed Sci. 19:349355.Google Scholar
Sharp, D. B. 1988. Alachlor. Pages 301333 In Kearney, P. C. and Kaufman, D. D., eds. Herbicides Chemistry, Degradation, and Mode of Action, Volume 3. New York: Marcel Dekker.Google Scholar
Thurman, E. M., Goolsby, D. A., Aga, D. S., Pomes, M. L., and Meyer, M. T. 1996. Occurrence of alachlor and its sulfonated metabolite in rivers and reservoirs in the midwestern United States: the importance of sulfonation in the transport of the chloroacetinilide herbicides. Environ. Sci. Technol. 30:569574.CrossRefGoogle Scholar
Vuilleumier, S. 1997. Bacterial glutathione S-transferase: what are they good for? J. Bacteriol. 179:14311441.CrossRefGoogle Scholar
Walker, A., Moon, A. H., and Welch, S. J. 1992. Influence of temperature, soil moisture and soil characteristics on the persistence of alachlor. Pestic. Sci. 35:109116.CrossRefGoogle Scholar
Weed, D. A., Kanwar, R. S., and Salvador, R. J. 1999. A simple model of alachlor dissipation. J. Environ. Qual. 28:14061412.CrossRefGoogle Scholar
Zimdahl, R. L. and Clark, S. K. 1982. Degradation of three acetanilide herbicides in soil. Weed Sci. 30:545548.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 14 *
View data table for this chart

* Views captured on Cambridge Core between 20th January 2017 - 5th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Alachlor and metolachlor transformation pattern in corn and soil
Available formats

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Alachlor and metolachlor transformation pattern in corn and soil
Available formats

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Alachlor and metolachlor transformation pattern in corn and soil
Available formats

Reply to: Submit a response

Your details

Conflicting interests

Do you have any conflicting interests? *