Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T16:48:17.072Z Has data issue: false hasContentIssue false

Visual evoked potentials for red–green gratings reversing at different temporal frequencies: Asymmetries with respect to isoluminance

Published online by Cambridge University Press:  03 February 2006

INGER RUDVIN
Affiliation:
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
ARNE VALBERG
Affiliation:
Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway

Abstract

Human visual evoked potentials (VEPs) were recorded for abrupt reversals of 2 cycles/deg (c/deg) square-wave gratings combining high red–green contrast with different levels of luminance contrast. Response characteristics—2nd harmonic amplitudes and peak latencies as a function of luminance contrast—were compared for four different reversal rates ranging from 6.25 Hz to 12.5 Hz. At every reversal frequency, the VEP amplitude and latency plots were nonsymmetrical with respect to isoluminance. The amplitude dropped to a minimum within a region of rapid phase change, always at a red–green luminance contrast for which the green color had the higher luminance, at about 40% or 50% Michelson luminance contrast. The rapid phase shift around this contrast suggested a sudden change in the relative impact of VEP generators with different latencies, possibly dominated by parvocellular or magnocellular input. The most prominent VEP waveform through most of the luminance contrast range, P110, is interpreted in terms of a parvo-mediated response that is attenuated with increasing reversal frequency. Contrast-dependent changes in the P110 amplitude appear to be responsible for the VEP asymmetries reported here.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allison, J.D., Melzer, P., Ding, Y., Bonds, A.B., & Casagrande, V.A. (2000). Differential contributions of magnocellular and parvocellular pathways to the contrast response of neurons in bush baby primary visual cortex (V1). Visual Neuroscience 17, 7176.Google Scholar
Bach, M. & Gerling, J. (1992). Retinal and cortical activity in human subjects during color flicker fusion. Vision Research 32, 12191223.Google Scholar
Benardete, E.A. & Kaplan, E. (1999). Dynamics of primate P retinal ganglion cells: Responses to chromatic and achromatic stimuli. Journal of Physiology (London) 519, 775790.Google Scholar
Benardete, E.A., Kaplan, E., & Knight, B.W. (1992). Contrast gain control in the primate retina: P cells are not X-like, some M-cells are. Visual Neuroscience 8, 483486.Google Scholar
Cottaris, N.P. & De Valois, R.L. (1998). Temporal dynamics of chromatic tuning in macaque primary visual cortex. Nature 395, 896900.Google Scholar
De Valois, R.L. & Cottaris, N.P. (1998). Inputs to directionally selective simple cells in macaque striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 95, 1448814493.Google Scholar
De Valois, R.L., Cottaris, N.P., Elfar, S.D., Mahon, L.E., & Wilson, J.A. (2000). Some transformations of color information from lateral geniculate nucleus to striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 97, 49975002.Google Scholar
Fiorentini, A., Burr, D.C., & Morrone, C.M. (1991). Spatial and temporal characteristics of color vision: VEP and psychophysical measurements. In From Pigments to Perception: Advances in Understanding the Visual Process, ed. Valberg, A. & Lee, B.B., pp. 139149. New York: Plenum Press.
Girard, P. & Morrone, M.C. (1995). Spatial structure of chromatically opponent receptive fields in the human visual system. Visual Neuroscience 12, 103116.Google Scholar
Gouras, P. (2003). The role of S-cones in human vision. Documenta Ophthalmologica 106, 511.Google Scholar
Gur, M. & Snodderly, D.M. (1997). A dissociation between brain activity and perception: Chromatically opponent cortical neurons signal chromatic flicker that is not perceived. Vision Research 37, 377382.Google Scholar
Hendry, S.H.C. & Reid, R.C. (2000). The koniocellular pathway in primate vision. Annual Review of Neuroscience 23, 127153.Google Scholar
Hubel, D.H. & Livingstone, M.S. (1990). Color and contrast sensitivity in the lateral geniculate body and primary visual cortex of the macaque monkey. Journal of Neuroscience 10, 22232237.Google Scholar
Kaplan, E. & Benardete, E. (2001). The dynamics of primate retinal ganglion cells. Progress in Brain Research 134, 1734.Google Scholar
Kaplan, E. & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the U.S.A. 83, 27552757.Google Scholar
Kremers, J., Silveira, L.C.L., & Kilavik, B.E. (2001). Influence of contrast on the responses of marmoset lateral geniculate cells to drifting gratings. Journal of Neurophysiology 85, 235246.Google Scholar
Kulikowski, J.J. (1991). On the nature of visual evoked potentials, unit responses and psychophysics. In From Pigments to Perception: Advances in Understanding the Visual Process, ed. Valberg, A. & Lee, B.B., pp. 197209. New York: Plenum Press.
Kulikowski, J.J., Murray, I.J., & Russell, M.H.A. (1991). Effect of stimulus size on chromatic and achromatic VEPs. In Colour Vision Deficiencies X, ed. Moreland, J.D. & Serra, A., pp. 5156. Dordrecht: Kluwer Academic Publishers.
Kulikowski, J.J. & Russell, M.H.A. (1989). Electroretinograms and visual evoked potentials elicited by chromatic and achromatic gratings. In Seeing Contour and Colour, ed. Kulikowski, J.J., Murray, I.J. & Dickinson, C.M., pp. 466467. Oxford: Pergamon Press.
Kulikowski, J.J. & Tolhurst, D.J. (1973). Psychophysical evidence for sustained and transient detectors in human vision. Journal of Physiology (London) 232, 149162.Google Scholar
Lee, B.B., Martin, P.R., & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology 404, 323347.Google Scholar
Lee, B.B., Martin, P.R., & Valberg, A. (1989). Amplitude and phase of responses of macaque retinal ganglion cells to flickering stimuli. Journal of Physiology 414, 245263.Google Scholar
Lee, B.B., Pokorny, J., Smith, V.C., Martin, P.R., & Valberg, A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. Journal of the Optical Society of America A 7, 22232236.Google Scholar
Maunsell, J.H.R., Ghose, G.M., Assad, J.A., McAdams, C.J., Boudreau, C.E., & Noerager, B.D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience 16, 114.Google Scholar
Maunsell, J.H.R. & Gibson, J.R. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68, 13321344.Google Scholar
McKeefry, D.J. (2001). Chromatic visual evoked potentials elicited by fast and slow motion onset. Color Research and Application 26, S145S149.Google Scholar
McKeefry, D.J., Russell, M.H.A., Murray, I.J., & Kulikowski, J.J. (1996). Amplitude and phase variations of harmonic components in human achromatic and chromatic visual evoked potentials. Visual Neuroscience 13, 639653.Google Scholar
Morand, S., Thut, G., de Peralta, R.G., Clarke, S., Khateb, A., Landis, T., & Michel, C.M. (2000). Electrophysiological evidence for fast visual processing through the human koniocellular pathway when stimuli move. Cerebral Cortex 10, 817825.Google Scholar
Morrone, C.M., Burr, D.C., & Fiorentini, A. (1993). Development of infant contrast sensitivity to chromatic stimuli. Vision Research 33, 25352552.Google Scholar
Morrone, C.M., Porciatti, V., Fiorentini, A., & Burr, D.C. (1994). Pattern-reversal electroretinogram in response to chromatic stimuli: I Humans. Visual Neuroscience 11, 861871.Google Scholar
Nakayama, K. & Mackeben, M. (1982). Steady state visual evoked potentials in the alert primate. Vision Research 22, 12611271.Google Scholar
Nealey, T.A. & Maunsell, J.H.R. (1994). Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. Journal of Neuroscience 14, 20692079.Google Scholar
Nowak, L.G., Munk, M.H.J., Girard, P., & Bullier, J. (1995). Visual latencies in areas V1 and V2 of the macaque monkey. Visual Neuroscience 12, 371384.Google Scholar
Odom, J.V., Bach, M., Barber, C., Brigell, M., Marmor, M.F., Tormene, A.P., Holder, G.E., & Vaegan, X. (2004). Visual evoked potentials standard. Documenta Ophthalmologica 108, 115123.Google Scholar
Rabin, J., Switkes, E., Crognale, M., Schneck, M.E., & Adams, A.J. (1994). Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing. Vision Research 34, 26572671.Google Scholar
Regan, D. (1970). Objective method of measuring the relative spectral-luminosity curve in man. Journal of the Optical Society of America A 60, 856859.Google Scholar
Regan, D. & Lee, B.B. (1993). A comparison of the 40-Hz response in man, and the properties of macaque ganglion cells. Visual Neuroscience 10, 439444.Google Scholar
Robson, A.G. & Kulikowski, J.J. (1998). Objective specification of tritanopic confusion lines using visual evoked potentials. Vision Research 38, 34993503.Google Scholar
Rudvin, I. (1995). Visual evoked potentials to reversing gratings and homogeneous flicker. Thesis, University of Oslo.
Rudvin, I. (2002). Red–green luminance asymmetry in pattern reversal VEP. Abstract book for the 40th symposium of The International Society for Clinical Electrophysiology of Vision, P115.
Rudvin, I. (2003). VEPs to red–green reversing gratings for a range of temporal frequencies and chromatic contrasts; amplitude and phase asymmetries with respect to isoluminance. Oral presentation at Symposium for Janus Kulikowski. Limits of Vision—Space, Time and Colour. Manchester, September 8 & 9.
Rudvin, I. (2005). Visual evoked potentials for reversals of red–green gratings with different chromatic contrasts: Asymmetries with respect to isoluminance. Visual Neuroscience 22, 749758.Google Scholar
Rudvin, I., Valberg, A., & Kilavik, B.E. (2000). Visual evoked potentials and magnocellular and parvocellular segregation. Visual Neuroscience 17, 579590.Google Scholar
Sawatari, A. & Callaway, E.M. (1996). Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex. Nature 380, 442446.Google Scholar
Schmolesky, M.T., Wang, Y., Hanes, D.P., Thompson, K.G., Leutgeb, S., Schall, J.D., & Leventhal, A.G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology 79, 32723278.Google Scholar
Stromeyer, C.F. & Martini, P. (2003). Human temporal impulse response speeds up with increased stimulus contrast. Vision Research 43, 285298.Google Scholar
Tootell, R.B.H., Hamilton, S.L., & Switkes, E. (1988). Functional anatomy of macaque striate cortex. IV. Contrast and magno-parvo streams. Journal of Neuroscience 8, 15941609.Google Scholar
Valberg, A. & Rudvin, I. (1997). Possible contributions of magnocellular- and parvocellular-pathway cells to transient VEPs. Visual Neuroscience 4, 111.Google Scholar
Vidyasagar, T.R., Kulikowski, J.J., Lipnicki, D.M., & Dreher, B. (2002). Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque. European Journal of Neuroscience 16, 945956.Google Scholar