Skip to main content Accessibility help
×
Home

Visual aftereffects and the consequences of visual system lesions on their perception in the rhesus monkey

  • Peter H. Schiller (a1) and Robert P. Dolan (a1)

Abstract

This study examined the consequences of visual system lesions on visual aftereffects produced by achromatic stimuli of various luminance contrasts and chromatic stimuli of various wavelength compositions. The effects of repeated exposure to such adapting stimuli were assessed using probes whose luminance contrast and wavelength composition were systematically varied using both detection and discrimination paradigms. Interocular tests revealed that both peripheral and central mechanisms contribute to the visual aftereffects produced by the adapting stimulus arrays used in this study. Contrary to the hypothesis according to which the midget system of the retina is the conveyor of visual afterimages, we found that blocking this system with lesions of parvocellular lateral geniculate nucleus, through which the midget cells make their way to the striate cortex in primates, did not eliminate the visual aftereffects. It appears therefore that the parasol system of the retina, which courses through the magnocellular layers of the lateral geniculate nucleus to cortex, can convey the necessary signals for the generation of visual aftereffects. Lesions of areas V4 and MT did not have significant effects on the visual aftereffects studied suggesting that the central factors that contribute to the visual aftereffects occur either already in area VI or are conveyed to higher centers through regions other than areas V4 and MT.

Copyright

References

Hide All
Bolanowski, S.J. & Doty, R.W. (1987). Perceptual “blankout” of monocular homogeneous fields (ganzfelder) is prevented with binocular viewing. Vision Research 27, 967982.
Brown, J.L. (1965). Afterimages. In Vision and Visual Perception, ed. Graham, C.H., pp. 479503. New York: John Wiley & Sons.
Derrington, A.M., Krauskopf, J. & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology (London) 357, 241265.
Ditchburn, R.W. & Fender, D.H. (1955). The stabilised retinal image. Optica Acta 2, 128133.
Dolan, R.P. & Schiller, P.H. (1994). Effects of ON channel blockade with 2–amino-4–phosphonobutyrate (APB) on brightness and contrast perception in monkeys. Visual Neuroscience 11, 2332.
Heywood, C.A. & Cowey, A. (1987). On the role of cortical area V4 in the discrimination of hue and pattern in macaque monkeys. Journal of Neuroscience 7, 26012617.
Hood, D.C. & Finkelstein, M.A. (1986). Sensitivity to light. In Handbook of Perception & Human Performance, Vol I, Sensory Processes & Perception, ed. Boff, K.R., Kaufman, L. & Thomas, J.P., Chap. 8. New York: John Wiley and Sons.
Ingling, C.R. & Grisby, S.S. (1990). Perceptual correlates of magno-cellular and parvocellular channels: Seeing form and depth in afterimages. Vision Research 30, 823828.
Kahneman, D. (1968). Method, findings and theory in studies of visual masking. Psychological Bulletin 70, 404425.
Krauskopf, J., Williams, D.R. & Heeley, D.W. (1982). Cardinal direction of color space. Vision Research 22, 11231131.
Lennie, P., Krauskopf, J. & Sclar, G. (1990). Chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience 10, 649669.
MacLeod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.
MacLeod, D.I.A. & Hayhoe, M. (1974). Rod origin of prolonged afterimages. Science 185, 11711172.
Pokorny, J. & Smith, V.C. (1986). Colorimetry and color discrimination. In Handbook of Perception & Human Performance, Vol I, Sensory Processes & Perception, ed. Boff, K.R., Kaufman, L. & Thomas, J.P., Chap. 8. New York: John Wiley and Sons.
Schiller, P.H. (1965). Monoptic and dischoptic visual masking by patterns and flashes. Journal of Experimental Psychology 69, 193199.
Schiller, P.H. (1969). Behavioral and electrophysiological studies of visual masking. In Symposium on Information Processing in the Nervous System, ed. Leibovitz, , pp. 231243. New York: Springer-Verlag.
Schiller, P.H. (1992). The ON and OFT channels of the visual system. Trends in Neurosciences 15, 8692.
Schiller, P.H. (1993). The effects of V4 and middle temporal (MT) area lesions on visual performance in the rhesus monkey. Vision Neuroscience 10, 717746.
Schiller, P.H., Logothetis, N.K. & Charles, E.R. (1991). Parallel pathways in the visual system: Their role in perception at isolumi-nance. Neuropsychologia 29, 433441.
Schiller, P.H. & Logothetis, N.K. (1990). The color-opponent and broad-band channels of the primate visual system. Trends in Neurosciences 13, 392398.
Schiller, P.H., Logothetis, N.K. & Charles, E.R. (1990). Role of color-opponent and broad-band channels in vision. Visual Neuroscience 5, 321346.
Schiller, P.H. & Malpeli, J.G. (1977). Properties and textal projections of monkey retinal ganglion cells. Journal of Neurophysiology 40, 428445.
Schiller, P.H. & Malpeli, J.G. (1978). Functional specificity of lateral geniculate nucleus laminae of the rhesus monkey. Journal of Neurophysiology 41, 788797.
Schiller, P.H. & Smith, M.C. (1965). A comparison of forward and backward masking. Psychonomic Science 3, 7778.
Waessle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447480.
Webster, M.A. & Mollon, J.D. (1991). Changes in colour appearance following post-receptoral adaptation. Nature 349, 235238.

Keywords

Related content

Powered by UNSILO

Visual aftereffects and the consequences of visual system lesions on their perception in the rhesus monkey

  • Peter H. Schiller (a1) and Robert P. Dolan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.