Skip to main content Accessibility help
×
Home

Topographic analysis of the ganglion cell layer in the retina of the four-eyed fish Anableps anableps

  • FRANCISCO GILBERTO OLIVEIRA (a1), JOÃO PAULO COIMBRA (a2), ELIZABETH SUMI YAMADA (a2), LUCIANO FOGAÇA DE ASSIS MONTAG (a3), FRANCYLLENA L. NASCIMENTO (a3), VALÉRIA A. OLIVEIRA (a3), DIÓGENES LUÍS DA MOTA (a4), ALEXANDRE MOTTA BITTENCOURT (a5), VALDIR LUNA DA SILVA (a6) and BELMIRA LARA DA SILVEIRA ANDRADE DA COSTA (a6)...

Abstract

Fish of the genus Anableps (Anablepidae, Cyprinodontiformes) have eyes that are adapted for simultaneous aerial and aquatic vision. In this study we investigate some of the corresponding retinal specializations of the adult Anableps anableps eye using retinal transverse sections and wholemounts. The linear dimensions of the retina were found to be asymmetric with a greater representation of the dorsal compared to the ventral visual field. The total number of neurons in the ganglion cell layer of the ventral hemiretina was on average 3.6 times greater than the values obtained in the dorsal hemiretina. Isodensity contour maps revealed a prominent horizontal visual streak in the ventral hemiretina with an average peak cell density of 18,286 cells/mm2. A second less-well-developed horizontal visual streak was also observed in the dorsal hemiretina. A sub-population of large cells with soma areas between 74 and 188 μm2 was identified and found to be distributed evenly across both hemiretinas. Together, these results show that the sampling gain of the ventral retina is significantly greater than the dorsal segment, that retinal specializations important for mediating acute vision are present in the parts of the visual field immediately above and below the surface of the water, and that visual functions related with the large ganglion cells require more even sampling across the visual field. The relevance of these retinal specializations to the feeding and other behavioral strategies adopted by Anableps is discussed.

Copyright

Corresponding author

Address correspondence and reprint requests to: Dr. Belmira Lara da Silveira Andrade da Costa, Laboratório de Neurofisiologia, Departamento de Fisiologia e Farmacologia, CCB, UFPE, Av. Prof. Moraes Rego, s/n, Cidade Universitária 50670901 Recife, PE, Brasil. E-mail: bl@ufpe.br

References

Hide All

REFERENCES

Al-Adhami, M.A., Oar, J., & Al Khodur, M. (2001). Embryonic fissure and photoreceptor differentiation in the eye of adult Garra rufa Heckel 1843 (Cyprinidae, Teleostei). Folia Biological (Krakow) 49, 183190.
Albensi, B.C. & Powell, J.H. (1998). The differential optomotor response of the four-eyed fish Anableps anableps. Perception 27, 14751483.
Avery, J.A. & Bowmaker, J.K. (1982). Visual pigments in the “four-eyed” fish Anableps anableps. Nature 298, 6263.
Bailes, H.J., Robinson, J.S.R., Trezise, A.E.O., & Collin, S.P. (2006). Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). Journal of Comparative Neurology 494, 381397.
Beach, D.H. & Jacobson, M. (1979). Patterns of cell proliferation in the retina of the clawed frog during development. Journal of Comparative Neurology 183, 603613.
Borwein, B. & Hollenberg, M.J. (1973). The photoreceptors of the “four-eyed” fish, Anableps anableps L. Journal of Morphology 140, 405442.
Bozzano, A. & Collin, S.P. (2000). Retinal ganglion cell topography in elasmobranchs. Brain Behavior and Evolution 55, 191208.
Bozzano, A. & Catalan, I.A. (2002). Ontogenetic changes in the retinal topography of the European hake, Merluccius merluccius: Implications of feeding and depth distribution. Marine Biology 141, 549559.
Bozzano, A. (2003). Vision in the rufus snake eel, Ophichthus rufus: Adaptive mechanisms for a burrowing life-style. Marine Biology 143, 167174.
Bridges, C.D. (1982). Porphyropsin in retina of four-eyed fish, Anableps anableps. Nature 300, 384.
Butcher, E.O. (1938). The structure of the retina of Fundulus heteroclitus and the regions of the retina associated with the different chromatophoric responses. Journal of Experimental Zoology 79, 275293.
Cameron, D.A. (1995). Asymmetric retinal growth in the adult teleost green sunfish (Lepomis cyanellus). Visual Neuroscience 12, 95112.
Cid, E., Velasco, A., Ciudad, J., Órfao, A., Aijon, J., & Lara, J.M. (2002). Quantitative evaluation of the distribution of proliferating cells in the adult retina in three cyprinid species. Cell Tissue Research 308, 4759.
Coimbra, J.P., Marceliano, M.L.V., Andrade-da-Costa, B.L.S., Yamada, E.S. (2006). The retina of tyrant flycatchers: Topographic organization of neuronal density and size in the ganglion cell layer of the great kiskadee Pitangus sulphuratus and the rusty margined flycatcher Myiozeletes cayanensis (Aves:Tyrannidae). Brain Behavior and Evolution 68, 1525.
Collin, S.P. (1988). The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): Morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations. Experimental Biology 47, 195207.
Collin, S.P. (1989). Topography and morphology of retinal ganglion cells in the coral trout Plectropomus leopardus (Serranidae): A retrograde cobaltous-lysine study. Journal of Comparative Neurology 281, 143158.
Collin, S.P. & Northcutt, R.G. (1993). The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi): III. Retinal ganglion cells. Brain Behavior and Evolution 42, 295320.
Collin, S.P. (1997). Specializations of the teleost visual system: Adaptive diversity from shallow-water to deep-sea. Acta Physiologica Scandinavica 161 (suppl.), 524.
Collin, S.P. (1999). Behavioural ecology and retinal cell topography. In Adaptive Mechanisms in the Ecology of Vision, eds. Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C. & Vallerga, S., pp. 509535. London, England: Kluwer Academic Publishers.
Collin, S.P. & Pettigrew, J.D. (1988a). Retinal topography in reef teleosts I: Some species with well-developed areae but poorly-developed streaks. Brain Behavior and Evolution 31, 269282.
Collin, S.P. & Pettigrew, J.D. (1988b). Retinal topography in reef teleosts II. Some species with prominent horizontal streak and high-density areae. Brain Behavior and Evolution 31, 283295.
Collin, S.P. & Pettigrew, J.D. (1988c). Retinal ganglion cell topography in teleosts: A comparison between nissl-stained material and retrograde labeling from the optic nerve. Journal of Comparative Neurology 276, 412422.
Douglas, R.H., Collin, S.P., & Corrigan, J. (2002). The eyes of suckermouth armoured catfish (Loricariidae, subfamily Hypostomus): Pupil response, lenticular longitudinal spherical aberration and retinal topography. Journal of Experimental Biology 205, 34253433.
Dunn-Meynell, A.A. & Sharma, S.C. (1987). Visual system of the channel catfish (Ictalurus punctatus): II. The morphology associated with the multiple optic papillae and retinal ganglion cell distribution. Journal of Comparative Neurology 256, 166175.
Easter, S.S., Jr. (1992). Retinal growth in foveated teleosts: Nasotemporal asymmetry keeps the fovea in temporal retina. The Journal of Neuroscience 12, 23812392.
Eastman, J.T. (1988). Ocular morphology in Antartic Notothenioid fishes. Journal of Morphology 196, 283306.
ESRI. (2002). ARCVIEW GIS 3.3. ESRI, United States.
Fernald, R.D. & Johns, P.R. (1980). Retinal specialization and growth in the cichlid fish, Haplochromis burtoni. American Zoology 20, 943.
Hayes, B., Martin, G.R., & de Brooke, L.M. (1991). Novel area subserving binocular vision in the retinae of procellariform seabirds. Brain Behavior and Evolution 37, 7984.
Hemmi, J.M. & Grünert, U. (1999). Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii). Visual Neuroscience 16, 191302.
Hughes, A. (1977). The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In: Handbook of Sensory Physiology, Vol. VII/5, ed. Crescitelli, F. Berlin: Springer-Verlag.
Inouge, K. & Noto, S. (1962). Structure of the retina in Anableps (four-eyed fish). Zoological Magazine 71, 188191.
Ito, H. & Murakami, T. (1984). Retinal ganglion cells in two teleost species, Sebasticus marmoratus and Navodon modestus. Journal of Comparative Neurology 229, 8096.
Kanungo, J., Swamynathan, S.K., & Piatigorsky, J. (2004). Abundant corneal gelsolin in Zebrafish and the “four-eyed” fish, Anableps anableps: Possible analogy with multifunctional lens crystalline. Experimental Eye Research 79, 949956.
Mednick, A.S. & Springer, A.D. (1988). Asymmetric distribution of retinal ganglion cells in goldfish. Journal of Comparative Neurology 268, 4959.
Meyer, D.L., Malz, C.R., & Jadhao, A.G. (1996). Nervus terminalis projection to the retina in the “four-eyed” fish, Anableps anableps. Neuroscience Letters 213, 8790.
Miyazaki, T., Iwami, T., Somiya, H., & Meyer-Rochow, B. (2002). Retinal topography of ganglion cells and putative UV-sensitive cones in two Antartic fishes: Pagothenia borchgrevinki and Trematomus bernacchii (Nototheniidae). Zoological Science 19, 12231229.
Munk, O. (1970). On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Videnkabelige Meddelelser fra Dansk Naturhistorik Forening i Kjobenhavn 133, 85120.
Reichenbach, A. & Robinson, S.R. (1995). Phylogenetic constraints on retinal organization and development. Progress in retinal and Eye Research 15, 139168.
Robinson, S.R., Dreher, B., & McCall, M.J. (1989). Nonuniform retinal expansion during the formation of the rabbit's visual streak: implications for the ontogeny of mammalian retinal topography. Visual Neuroscience 2, 201219.
Saidel, W.M. & Fabiane, R.S. (1998). Optomotor response of Anableps anableps on the field of view. Vision Research 38, 20012006.
Schwab, I.R., Ho, V., Roth, A., Blankenship, T.N., & Fitzgerald, P.G. (2001). Evolutionary attempts at 4 eyes in vertebrates. Transactions American Ophthalmology Society 99, 145156.
Schwassmann, H.O. & Kruger, L. (1965). Experimental analysis of the visual system of the four-eyed fish Anableps microlepis. Vision Research 5, 269281.
Sivak, J.G. (1976). Optics of the eye of the “Four-eyed fish” (Anableps anableps). Vision Research 16, 531534.
Shand, J., Chin, S.M., Harman, A.M., Moore, S., & Collin, S.P. (2000). Variability in the location of the retinal ganglion cell area centralis is correlated with ontogenetic changes in feeding behavior in the black bream, Acanthopagrus butcheri (Sparidae, Teleostei). Brain Behavior and Evolution 55, 176190.
Stone, J. (1981). The Wholemount Handbook. Sidney, Australian: Maitland Publications Pty. Ltda.
Swamynathan, S.K., Crawford, M.A., Robinson Jr, W.G., Kanungo, J., & Piiatigorsky, J. (2003). Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps). FASEB Journal 17, 19962005.
Uemura, M., Somiya, H., Moku, M., & Kawaguchi, K. (2000). Temporal and mosaic distribution of large ganglion cells in the retina of a daggertooth aulopiform deep-sea fish (Anotopteus pharao). Philosophical Transactions of the Royal Society B (London) 355, 11611166.
Von Bartheld, C.S. & Meyer, D.L. (1987). Comparative neurology of the optic tectum in ray-finned fishes: patterns of lamination formed by retinotectal projections. Brain Research 420, 277288.
Zahl, P.A., McLaughlin, J.J.A., & Gomprecht, R.J. (1977). Visual versatility and feeding of the four-eyed fish Anableps. Copeia 3, 79.

Keywords

Topographic analysis of the ganglion cell layer in the retina of the four-eyed fish Anableps anableps

  • FRANCISCO GILBERTO OLIVEIRA (a1), JOÃO PAULO COIMBRA (a2), ELIZABETH SUMI YAMADA (a2), LUCIANO FOGAÇA DE ASSIS MONTAG (a3), FRANCYLLENA L. NASCIMENTO (a3), VALÉRIA A. OLIVEIRA (a3), DIÓGENES LUÍS DA MOTA (a4), ALEXANDRE MOTTA BITTENCOURT (a5), VALDIR LUNA DA SILVA (a6) and BELMIRA LARA DA SILVEIRA ANDRADE DA COSTA (a6)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed