Skip to main content Accessibility help
×
Home

Synaptic inputs from identified bipolar and amacrine cells to a sparsely branched ganglion cell in rabbit retina

  • Andrea S. Bordt (a1), Diego Perez (a1), Luke Tseng (a1), Weiley Sunny Liu (a1), Jay Neitz (a2), Sara S. Patterson (a2), Edward V. Famiglietti (a3) and David W. Marshak (a1)...

Abstract

There are more than 30 distinct types of mammalian retinal ganglion cells, each sensitive to different features of the visual environment. In rabbit retina, they can be grouped into four classes according to their morphology and stratification of their dendrites in the inner plexiform layer (IPL). The goal of this study was to describe the synaptic inputs to one type of Class IV ganglion cell, the third member of the sparsely branched Class IV cells (SB3). One cell of this type was partially reconstructed in a retinal connectome developed using automated transmission electron microscopy (ATEM). It had slender, relatively straight dendrites that ramify in the sublamina a of the IPL. The dendrites of the SB3 cell were always postsynaptic in the IPL, supporting its identity as a ganglion cell. It received 29% of its input from bipolar cells, a value in the middle of the range for rabbit retinal ganglion cells studied previously. The SB3 cell typically received only one synapse per bipolar cell from multiple types of presumed OFF bipolar cells; reciprocal synapses from amacrine cells at the dyad synapses were infrequent. In a few instances, the bipolar cells presynaptic to the SB3 ganglion cell also provided input to an amacrine cell presynaptic to the ganglion cell. There was apparently no crossover inhibition from narrow-field ON amacrine cells. Most of the amacrine cell inputs were from axons and dendrites of GABAergic amacrine cells, likely providing inhibitory input from outside the classical receptive field.

Copyright

Corresponding author

*Address correspondence to: David W. Marshak, Email: david.w.marshak@uth.tmc.edu

References

Hide All
Anderson, J.R., Jones, B.W., Watt, C.B., Shaw, M.V., Yang, J.H., Demill, D., Lauritzen, J.S., Lin, Y., Rapp, K.D., Mastronarde, D., Koshevoy, P., Grimm, B., Tasdizen, T., Whitaker, R. & Marc, R.E. (2011a). Exploring the retinal connectome. Molecular Vision 17, 355379.
Anderson, J.R., Jones, B.W., Yang, J.H., Shaw, M.V., Watt, C.B., Koshevoy, P., Spaltenstein, J., Jurrus, E., Kannan, U.V., Whitaker, R.T., Mastronarde, D., Tasdizen, T. & Marc, R.E. (2009). A computational framework for ultrastructural mapping of neural circuitry. PLoS Biology 7, e1000074.
Anderson, J.R., Mohammed, S., Grimm, B., Jones, B.W., Koshevoy, P., Tasdizen, T., Whitaker, R. & Marc, R.E. (2011b). The Viking viewer for connectomics: Scalable multi-user annotation and summarization of large volume data sets. Journal of Microscopy 241, 1328.
Baccus, S.A. (2007). Timing and computation in inner retinal circuitry. Annual Review of Physiology 69, 271290.
Baden, T., Berens, P., Franke, K., Roman Roson, M., Bethge, M. & Euler, T. (2016). The functional diversity of retinal ganglion cells in the mouse. Nature 529, 345350.
Barlow, H.B., Hill, R.M. & Levick, W.R. (1964). Retinal ganglion cells responding selectively to direction and speed of image motion in the rabbit. The Journal of Physiology 173, 377407.
Beaudoin, D.L., Kupershtok, M. & Demb, J.B. (2017). Selective synaptic connections in the retinal pathway for night vision. The Journal of Comparative Neurology.
Beaudoin, D.L., Kupershtok, M. & Demb, J.B. (2019). Selective synaptic connections in the retinal pathway for night vision. Journal of Comparative Neurology 527, 117132.
Berson, D.M. (2003). Strange vision: Ganglion cells as circadian photoreceptors. Trends in Neurosciences 26, 314320.
Bloomfield, S.A. (1991). Two types of orientation-sensitive responses of amacrine cells in the mammalian retina. Nature 350, 347350.
Bloomfield, S.A. (1994). Orientation-sensitive amacrine and ganglion cells in the rabbit retina. Journal of Neurophysiology 71, 16721691.
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat’s retina. The Journal of Physiology 240, 397419.
Caldwell, J.H. & Daw, N.W. (1978). New properties of rabbit retinal ganglion cells. The Journal of Physiology 276, 257276.
Cleland, B.G. & Levick, W.R. (1974a). Brisk and sluggish concentrically organized ganglion cells in the cat’s retina. The Journal of Physiology 240, 421456.
Cleland, B.G. & Levick, W.R. (1974b). Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. The Journal of Physiology 240, 457492.
Dacheux, R.F., Chimento, M.F. & Amthor, F.R. (2003). Synaptic input to the on-off directionally selective ganglion cell in the rabbit retina. The Journal of Comparative Neurology 456, 267278.
Famiglietti, E.V. (1981). Functional architecture of cone bipolar cells in mammalian retina. Vision Research 21, 15591563.
Famiglietti, E.V. (1985). Starburst amacrine cells: Morphological constancy and systematic variation in the anisotropic field of rabbit retinal neurons. Journal of Neuroscience 5, 562577.
Famiglietti, E.V. (1987). Morphological classification of ganglion cells in rabbit retina. Society for Neuroscience Abstract 13, 380.
Famiglietti, E.V. (1990). A distinct type of displaced ganglion cell in a mammalian retina. Brain Research 535, 169173.
Famiglietti, E.V. (1991). Synaptic organization of starburst amacrine cells in rabbit retina: Analysis of serial thin sections by electron microscopy and graphic reconstruction. The Journal of Comparative Neurology 309, 4070.
Famiglietti, E.V. (1992a). Dendritic co-stratification of ON and ON-OFF directionally selective ganglion cells with starburst amacrine cells in rabbit retina. The Journal of Comparative Neurology 324, 322335.
Famiglietti, E.V. (1992b). New metrics for analysis of dendritic branching patterns demonstrating similarities and differences in ON and ON-OFF directionally selective retinal ganglion cells. The Journal of Comparative Neurology 324, 295321.
Famiglietti, E.V. (1992c). Polyaxonal amacrine cells of rabbit retina: Morphology and stratification of PA1 cells. The Journal of Comparative Neurology 316, 391405.
Famiglietti, E.V. (1992d). Polyaxonal amacrine cells of rabbit retina: PA2, PA3, and PA4 cells. Light and electron microscopic studies with a functional interpretation. The Journal of Comparative Neurology 316, 422446.
Famiglietti, E.V. (1992e). Polyaxonal amacrine cells of rabbit retina: Size and distribution of PA1 cells. The Journal of Comparative Neurology 316, 406421.
Famiglietti, E.V. (2002). A structural basis for omnidirectional connections between starburst amacrine cells and directionally selective ganglion cells in rabbit retina, with associated bipolar cells. Visual Neuroscience 19, 145162.
Famiglietti, E.V. (2004). Class I and class II ganglion cells of rabbit retina: A structural basis for X and Y (brisk) cells. The Journal of Comparative Neurology 478, 323346.
Famiglietti, E.V. (2005a). “Small-tufted” ganglion cells and two visual systems for the detection of object motion in rabbit retina. Visual Neuroscience 22, 509534.
Famiglietti, E.V. (2005b). Synaptic organization of complex ganglion cells in rabbit retina: Type and arrangement of inputs to directionally selective and local-edge-detector cells. The Journal of Comparative Neurology 484, 357391.
Famiglietti, E.V. (2008). Wide-field cone bipolar cells and the blue-ON pathway to color-coded ganglion cells in rabbit retina. Visual Neuroscience 25, 5366.
Famiglietti, E.V. (2009). Bistratified ganglion cells of rabbit retina: Neural architecture for contrast-independent visual responses. Visual Neuroscience 26, 195213.
Famiglietti, E.V. (2016). Neural architecture of the “transient” ON directionally selective (class IIb1) ganglion cells in rabbit retina, partly co-stratified with starburst amacrine cells. Visual Neuroscience 33, E004.
Famiglietti, E.V. & Kolb, H. (1975). A bistratified amacrine cell and synaptic cirucitry in the inner plexiform layer of the retina. Brain Research 84, 293300.
Famiglietti, E.V. & Kolb, H. (1976). Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science 194, 193195.
Franke, K., Berens, P., Schubert, T., Bethge, M., Euler, T. & Baden, T. (2017). Inhibition decorrelates visual feature representations in the inner retina. Nature 542, 439444.
Freed, M.A. & Sterling, P. (1988). The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. Journal of Neuroscience 8, 23032320.
Grimes, W.N., Zhang, J., Graydon, C.W., Kachar, B. & Diamond, J.S. (2010). Retinal parallel processors: More than 100 independent microcircuits operate within a single interneuron. Neuron 65, 873885.
Hoshi, H., Liu, W.L., Massey, S.C. & Mills, S.L. (2009). ON inputs to the OFF layer: Bipolar cells that break the stratification rules of the retina. Journal of Neuroscience 29, 88758883.
Hughes, S., Jagannath, A., Rodgers, J., Hankins, M.W., Peirson, S.N. & Foster, R.G. (2016). Signalling by melanopsin (OPN4) expressing photosensitive retinal ganglion cells. Eye 30, 247254.
Jensen, R.J. (1991). Involvement of glycinergic neurons in the diminished surround activity of ganglion cells in the dark-adapted rabbit retina. Visual Neuroscience 6, 4353.
Jones, B.W., Kondo, M., Terasaki, H., Watt, C.B., Rapp, K., Anderson, J., Lin, Y., Shaw, M.V., Yang, J.H. & Marc, R.E. (2011). Retinal remodeling in the Tg P347L rabbit, a large-eye model of retinal degeneration. The Journal of Comparative Neurology 519, 27132733.
Kim, T., Soto, F. & Kerschensteiner, D. (2015). An excitatory amacrine cell detects object motion and provides feature-selective input to ganglion cells in the mouse retina. eLife 4, e08025.
Kolb, H., Linberg, K.A. & Fisher, S.K. (1992). Neurons of the human retina: A Golgi study. The Journal of Comparative Neurology 318, 147187.
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells and ganglion cells of the cat retina: A Golgi study. Vision Research 21, 10811114.
Lauritzen, J.S., Anderson, J.R., Jones, B.W., Watt, C.B., Mohammed, S., Hoang, J.V. & Marc, R.E. (2013). ON cone bipolar cell axonal synapses in the OFF inner plexiform layer of the rabbit retina. The Journal of Comparative Neurology 521, 9771000.
Lauritzen, J.S., Sigulinsky, C.L., Anderson, J.R., Kalloniatis, M., Nelson, N.T., Emrich, D.P., Rapp, C., McCarthy, N., Kerzner, E., Meyer, M., Jones, B.W. & Marc, R.E. (2016). Rod-cone crossover connectome of mammalian bipolar cells. The Journal of Comparative Neurology 527, 87116.
Lee, S., Chen, L., Chen, M., Ye, M., Seal, R.P. & Zhou, Z.J. (2014). An unconventional glutamatergic circuit in the retina formed by vGluT3 amacrine cells. Neuron 84, 708715.
Lee, S., Zhang, Y., Chen, M. & Zhou, Z.J. (2016). Segregated glycine-glutamate Co-transmission from vGluT3 amacrine cells to contrast-suppressed and contrast-enhanced retinal circuits. Neuron 90, 2734.
Levick, W.R. (1967). Receptive fields and trigger features of ganglion cells in the visual streak of the rabbits retina. The Journal of Physiology 188, 285307.
Li, W., Chen, S. & DeVries, S.H. (2010). A fast rod photoreceptor signaling pathway in the mammalian retina. Nature Neuroscience 13, 414416.
Li, W., Keung, J.W. & Massey, S.C. (2004). Direct synaptic connections between rods and OFF cone bipolar cells in the rabbit retina. The Journal of Comparative Neurology 474, 112.
Liu, P.C. & Chiao, C.C. (2007). Morphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina. Investigative Ophthalmology & Visual Science 48, 33883395.
MacNeil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E. & Masland, R.H. (1999). The shapes and numbers of amacrine cells: Matching of photofilled with golgi-stained cells in the rabbit retina and comparison with other mammalian species. The Journal of Comparative Neurology 413, 305326.
MacNeil, M.A., Heussy, J.K., Dacheux, R.F., Raviola, E. & Masland, R.H. (2004). The population of bipolar cells in the rabbit retina. The Journal of Comparative Neurology 472, 7386.
Marc, R.E., Anderson, J.R., Jones, B.W., Sigulinsky, C.L. & Lauritzen, J.S. (2014). The AII amacrine cell connectome: A dense network hub. Frontiers in Neural Circuits 8, 104.
Marc, R.E., Jones, B.W., Watt, C.B., Anderson, J.R., Sigulinsky, C. & Lauritzen, S. (2013). Retinal connectomics: Towards complete, accurate networks. Progress in Retinal and Eye Research 37, 141162.
Marshak, D.W. (2016). A tale of two neurotransmitters. Visual Neuroscience 33, E017.
McGillem, G.S. & Dacheux, R.F. (2001). Rabbit cone bipolar cells: Correlation of their morphologies with whole-cell recordings. Visual Neuroscience 18, 675685.
McGuire, B.A., Stevens, J.K. & Sterling, P. (1986). Microcircuitry of beta ganglion cells in cat retina. Journal of Neuroscience 6, 907918.
Mills, S.L. & Massey, S.C. (1992). Morphology of bipolar cells labeled by DAPI in the rabbit retina. The Journal of Comparative Neurology 321, 133149.
Mills, S.L., Tian, L.M., Hoshi, H., Whitaker, C.M. & Massey, S.C. (2014). Three distinct blue-green color pathways in a mammalian retina. Journal of Neuroscience 34, 17601768.
Murphy-Baum, B.L. & Taylor, W.R. (2015). The synaptic and morphological basis of orientation selectivity in a polyaxonal amacrine cell of the rabbit retina. Journal of Neuroscience 35, 1333613350.
Pu, M.L. & Amthor, F.R. (1990). Dendritic morphologies of retinal ganglion cells projecting to the lateral geniculate nucleus in the rabbit. The Journal of Comparative Neurology 302, 675693.
Rodieck, R.W. & Watanabe, M. (1993). Survey of the morphology of macaque retinal ganglion cells that project to the pretectum, superior colliculus, and parvicellular laminae of the lateral geniculate nucleus. The Journal of Comparative Neurology 338, 289303.
Sanes, J.R. & Masland, R.H. (2015). The types of retinal ganglion cells: Current status and implications for neuronal classification. Annual Review of Neuroscience 38, 221246.
Sivyer, B. & Vaney, D.I. (2010). Dendritic morphology and tracer-coupling pattern of physiologically identified transient uniformity detector ganglion cells in rabbit retina. Visual Neuroscience 27, 159170.
Soto, F., Bleckert, A., Lewis, R., Kang, Y., Kerschensteiner, D., Craig, A.M. & Wong, R.O. (2011). Coordinated increase in inhibitory and excitatory synapses onto retinal ganglion cells during development. Neural Development 6, 31.
Stanford, L.R. (1987). X-cells in the cat retina: Relationships between the morphology and physiology of a class of cat retinal ganglion cells. Journal of Neurophysiology 58, 940964.
Stone, J. & Fukuda, Y. (1974). Properties of cat retinal ganglion cells: A comparison of W-cells with X- and Y-cells. Journal of Neurophysiology 37, 722748.
Strettoi, E. & Masland, R.H. (1995). The organization of the inner nuclear layer of the rabbit retina. Journal of Neuroscience 15, 875888.
Tien, N.W., Kim, T. & Kerschensteiner, D. (2016). Target-specific glycinergic transmission from VGluT3-expressing amacrine cells shapes suppressive contrast responses in the retina. Cell Reports 15, 13691375.
Vaney, D.I. (2004). Type 1 nitrergic (ND1) cells of the rabbit retina: Comparison with other axon-bearing amacrine cells. The Journal of Comparative Neurology 474, 149171.
Vaney, D.I., Peichl, L. & Boycott, B.B. (1988). Neurofibrillar long-range amacrine cells in mammalian retinae. Proceedings of the Royal Society of London Series B, Biological Sciences 235, 203219.
Volgyi, B., Xin, D., Amarillo, Y. & Bloomfield, S.A. (2001). Morphology and physiology of the polyaxonal amacrine cells in the rabbit retina. The Journal of Comparative Neurology 440, 109125.
Wassle, H., Puller, C., Muller, F. & Haverkamp, S. (2009). Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. Journal of Neuroscience 29, 106117.
Watanabe, M., Fukuda, Y., Hsiao, C.F., & Ito, H. (1985). Electron microscopic analysis of amacrine and bipolar cell inputs on Y-, X-, and W-cells in the cat retina. Brain Research 358, 229–40.
Werblin, F.S. (2011). The retinal hypercircuit: A repeating synaptic interactive motif underlying visual function. The Journal of Physiology 589, 36913702.
West, R.W. & Dowling, J.E. (1972). Synapses onto different morphological types of retinal ganglion cells. Science 178, 510512.
Yamada, E.S., Bordt, A.S. & Marshak, D.W. (2005). Wide-field ganglion cells in macaque retinas. Visual Neuroscience 22, 383393.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed