Skip to main content Accessibility help
×
Home

Short-wavelength cone-opponent retinal ganglion cells in mammals

  • DAVID W. MARSHAK (a1) (a2) and STEPHEN L. MILLS (a2)

Abstract

In all of the mammalian species studied to date, the short-wavelength-sensitive (S) cones and the S-cone bipolar cells that receive their input are very similar, but the retinal ganglion cells that receive synapses from the S-cone bipolar cells appear to be quite different. Here, we review the literature on mammalian retinal ganglion cells that respond selectively to stimulation of S-cones and respond with opposite polarity to longer wavelength stimuli. There are at least three basic mechanisms to generate these color-opponent responses, including: (1) opponency is generated in the outer plexiform layer by horizontal cells and is conveyed to the ganglion cells via S-cone bipolar cells, (2) inputs from bipolar cells with different cone inputs and opposite response polarity converge directly on the ganglion cells, and (3) inputs from S-cone bipolar cells are inverted by S-cone amacrine cells. These are not mutually exclusive; some mammalian ganglion cells that respond selectively to S-cone stimulation seem to utilize at least two of them. Based on these findings, we suggest that the small bistratified ganglion cells described in primates are not the ancestral type, as proposed previously. Instead, the known types of ganglion cells in this pathway evolved from monostratified ancestral types and became bistratified in some mammalian lineages.

Copyright

Corresponding author

Address correspondence to: David W. Marshak, Department of Neurobiology and Anatomy, University of Texas Health Science Center at Houston, PO Box 20708 Houston, TX 77225. E-mail: david.w.marshak@uth.tmc.edu

References

Hide All
Breuninger, T., Puller, C., Haverkamp, S. & Euler, T. (2011). Chromatic bipolar cell pathways in the mouse retina. The Journal of Neuroscience 31, 65046517.
Caldwell, J.H. & Daw, N.W. (1978). New properties of rabbit retinal ganglion cells. The Journal of Physiology 276, 257276.
Calkins, D.J., Tsukamoto, Y. & Sterling, P. (1998). Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. The Journal of Neuroscience 18, 33733385.
Chang, L., Breuninger, T. & Euler, T. (2013). Chromatic coding from cone-type unselective circuits in the mouse retina. Neuron 77, 559571.
Chen, S. & Li, W. (2012). A color-coding amacrine cell may provide a blue-off signal in a mammalian retina. Nature Neuroscience 15, 954956.
Chichilnisky, E.J. & Baylor, D.A. (1999). Receptive-field microstructure of blue-yellow ganglion cells in primate retina. Nature Neuroscience 2, 889893.
Cleland, B.G. & Levick, W.R. (1974). Properties of rarely encountered types of ganglion cells in the cat’s retina and an overall classification. The Journal of Physiology 240, 457492.
Cohen, E. & Sterling, P. (1990 a). Convergence and divergence of cones onto bipolar cells in the central area of cat retina. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 330, 323328.
Cohen, E. & Sterling, P. (1990 b). Demonstration of cell types among cone bipolar neurons of cat retina. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 330, 305321.
Crook, J.D., Davenport, C.M., Peterson, B.B., Packer, O.S., Detwiler, P.B. & Dacey, D.M. (2009). Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. The Journal of Neuroscience 29, 83728387.
Crook, J.D., Manookin, M.B., Packer, O.S. & Dacey, D.M. (2011). Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. The Journal of Neuroscience 31, 17621772.
Crook, J.D., Peterson, B.B., Packer, O.S., Robinson, F.R., Gamlin, P.D., Troy, J.B. & Dacey, D.M. (2008). The smooth monostratified ganglion cell: Evidence for spatial diversity in the Y-cell pathway to the lateral geniculate nucleus and superior colliculus in the macaque monkey. The Journal of Neuroscience 28, 1265412671.
Dacey, D.M. (1993). Morphology of a small-field bistratified ganglion cell type in the macaque and human retina. Visual Neuroscience 10, 10811098.
Dacey, D.M. (2000). Parallel pathways for spectral coding in primate retina. Annual Review of Neuroscience 23, 743775.
Dacey, D.M. & Lee, B.B. (1994). The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.
Dacey, D.M., Liao, H.W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.W. & Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749754.
Dacey, D.M. & Packer, O.S. (2003). Colour coding in the primate retina: diverse cell types and cone-specific circuitry. Current Opinion in Neurobiology 13, 421427.
Dacey, D.M., Peterson, B.B., Robinson, F.R. & Gamlin, P.D. (2003). Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 1527.
Dacey, D.M., Crook, J.D., Manookin, M.B. & Packer, O.S. (2011). Absence of synaptic inhibition associated with S-cone on excitatory input to the small bistratified, blue-yellow opponent ganglion cell of the macaque monkey retina. Association for Research in Vision and Ophthalmology Annual Meeting, Fort Lauderdale, FL.
de Monasterio, F.M. (1978 a). Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. Journal of Neurophysiology 41, 14181434.
de Monasterio, F.M. (1978 b). Properties of concentrically organized X and Y ganglion cells of macaque retina. Journal of Neurophysiology 41, 13941417.
de Monasterio, F.M. & Gouras, P. (1975). Functional properties of ganglion cells of the rhesus monkey retina. The Journal of Physiology 251, 167195.
de Monasterio, F.M., Gouras, P. & Tolhurst, D.J. (1975). Trichromatic colour opponency in ganglion cells of the rhesus monkey retina. The Journal of Physiology 251, 197216.
Dowling, J.E. (2012). The Retina: An Approachable Part of the Brain. Cambridge, MAHarvard University Press.
Ekesten, B. & Gouras, P. (2005). Cone and rod inputs to murine retinal ganglion cells: evidence of cone opsin specific channels. Visual Neuroscience 22, 893903.
Famiglietti, E.V. (2008). Wide-field cone bipolar cells and the blue-ON pathway to color-coded ganglion cells in rabbit retina. Visual Neuroscience 25, 5366.
Famiglietti, E.V. (2009). Bistratified ganglion cells of rabbit retina: Neural architecture for contrast-independent visual responses. Visual Neuroscience 26, 195213.
Famiglietti, E.V. Jr. (1981). Functional architecture of cone bipolar cells in mammalian retina. Vision Research 21, 15591563.
Field, G.D., Gauthier, J.L., Sher, A., Greschner, M., Machado, T.A., Jepson, L.H., Shlens, J., Gunning, D.E., Mathieson, K., Dabrowski, W., Paninski, L., Litke, A.M. & Chichilnisky, E.J. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature 467, 673677.
Field, G.D., Greschner, M., Gauthier, J.L., Rangel, C., Shlens, J., Sher, A., Marshak, D.W., Litke, A.M. & Chichilnisky, E.J. (2009). High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina. Nature Neuroscience 12, 11591164.
Field, G.D., Sher, A., Gauthier, J.L., Greschner, M., Shlens, J., Litke, A.M. & Chichilnisky, E.J. (2007). Spatial properties and functional organization of small bistratified ganglion cells in primate retina. The Journal of Neuroscience 27, 1326113272.
Ghosh, F., Bruun, A. & Ehinger, B. (1999). Graft-host connections in long-term full-thickness embryonic rabbit retinal transplants. Investigative Ophthalmology & Visual Science 40, 126132.
Ghosh, K.K., Martin, P.R. & Grunert, U. (1997). Morphological analysis of the blue cone pathway in the retina of a New World monkey, the marmoset Callithrix jacchus. The Journal of Comparative Neurology 379, 211225.
Gouras, P. (1968). Identification of cone mechanisms in monkey ganglion cells. The Journal of Physiology 199, 533547.
Gouras, P. & Eggers, H. (1982). Ganglion cells mediating the signals of blue sensitive cones in primate retina detect white-yellow borders independently of brightness. Vision Research 22, 675679.
Greschner, M., Shlens, J., Bakolitsa, C., Field, G.D., Gauthier, J.L., Jepson, L.H., Sher, A., Litke, A.M. & Chichilnisky, E.J. (2011). Correlated firing among major ganglion cell types in primate retina. The Journal of Physiology 589, 7586.
Grunert, U., Jusuf, P.R., Lee, S.C. & Nguyen, D.T. (2011). Bipolar input to melanopsin containing ganglion cells in primate retina. Visual Neuroscience 28, 3950.
Guenther, E. & Zrenner, E. (1993). The spectral sensitivity of dark- and light-adapted cat retinal ganglion cells. The Journal of Neuroscience 13, 15431550.
Haverkamp, S., Wassle, H., Duebel, J., Kuner, T., Augustine, G.J., Feng, G. & Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. The Journal of Neuroscience 25, 54385445.
Hemmi, J.M., James, A. & Taylor, W.R. (2002). Color opponent retinal ganglion cells in the tammar wallaby retina. Journal of Vision 2, 608617.
Hong, Y.K., Kim, I.J. & Sanes, J.R. (2011). Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. The Journal of Comparative Neurology 519, 16911711.
Hoshi, H. & Mills, S.L. (2009). Components and properties of the G3 ganglion cell circuit in the rabbit retina. The Journal of Comparative Neurology 513, 6982.
Hubel, D.H. & Wiesel, T.N. (1960). Receptive fields of optic nerve fibres in the spider monkey. The Journal of Physiology 154, 572580.
Jepson, L.H., Hottowy, P., Mathieson, K., Gunning, D.E., Dabrowski, W., Litke, A.M. & Chichilnisky, E.J. (2013). Focal electrical stimulation of major ganglion cell types in the primate retina for the design of visual prostheses. The Journal of Neuroscience 33, 71947205.
Jusuf, P.R., Lee, S.C., Hannibal, J. & Grunert, U. (2007). Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. The European Journal of Neuroscience 26, 29062921.
Klug, K., Herr, S., Ngo, I.T., Sterling, P. & Schein, S. (2003). Macaque retina contains an S-cone OFF midget pathway. The Journal of Neuroscience 23, 98819887.
Koilkonda, R.D., Hauswirth, W.W. & Guy, J. (2009). Efficient expression of self-complementary AAV in ganglion cells of the ex vivo primate retina. Molecular Vision 15, 27962802.
Kolb, H., Goede, P., Roberts, S., McDermott, R. & Gouras, P. (1992). Uniqueness of the S-cone pedicle in the human retina and consequences for color processing. The Journal of Comparative Neurology 386, 443460.
Kolb, H., Linberg, K.A. & Fisher, S.K. (1992). Neurons of the human retina: a Golgi study. The Journal of Comparative Neurology 318, 147187.
Li, W. & DeVries, S.H. (2006). Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nature Neuroscience 9, 669675.
Light, A.C., Zhu, Y., Shi, J., Saszik, S., Lindstrom, S., Davidson, L., Li, X., Chiodo, V.A., Hauswirth, W.W., Li, W. & DeVries, S.H. (2012). Organizational motifs for ground squirrel cone bipolar cells. The Journal of Comparative Neurology 520, 28642887.
Linberg, K.A., Suemune, S. & Fisher, S.K. (1996). Retinal neurons of the California ground squirrel, Spermophilus beecheyi: A Golgi study. The Journal of Comparative Neurology 365, 173216.
Liu, P.C. & Chiao, C.C. (2007). Morphologic identification of the OFF-type blue cone bipolar cell in the rabbit retina. Investigative Ophthalmology & Visual Science 48, 33883395.
MacNeil, M.A. & Gaul, P.A. (2008). Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones. The Journal of Comparative Neurology 506, 615.
Marc, R.E., Kalloniatis, M. & Jones, B.W. (2005). Excitation mapping with the organic cation AGB2+. Vision Research 45, 34543468.
Marshak, D. (1997). Secretoneurin-IR amacrine cells of the macaque retina. Investigative Ophthalmology & Visual Science 38, S50.
Marshak, D.W., Aldrich, L.B., Del Valle, J. & Yamada, T. (1990). Localization of immunoreactive cholecystokinin precursor to amacrine cells and bipolar cells of the macaque monkey retina. The Journal of Neuroscience 10, 30453055.
Michael, C.R. (1968). Receptive fields of single optic nerve fibers in a mammal with an all-cone retina. 3. Opponent color units. Journal of Neurophysiology 31, 268282.
Mills, S.L. & Tian, L.-M. (2012). The morphology and physiology of blue/green ganglion cells in the rabbit retina. Association for Research in Vision and Ophthalmology Annual Meeting, Ft. Lauderdale, FL.
Moritoh, S., Komatsu, Y., Yamamori, T. & Koizumi, A. (2013). Diversity of retinal ganglion cells identified by transient GFP transfection in organotypic tissue culture of adult marmoset monkey retina. PLoS One 8, e54667.
Packer, O.S., Verweij, J., Li, P.H., Schnapf, J.L. & Dacey, D.M. (2010). Blue-yellow opponency in primate S cone photoreceptors. The Journal of Neuroscience 30, 568572.
Percival, K.A., Jusuf, P.R., Martin, P.R. & Grunert, U. (2009). Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina. The Journal of Comparative Neurology 517, 655669.
Percival, K.A., Martin, P.R. & Grunert, U. (2011). Synaptic inputs to two types of koniocellular pathway ganglion cells in marmoset retina. The Journal of Comparative Neurology 519, 21352153.
Percival, K.A., Martin, P.R. & Grunert, U. (2013). Organisation of koniocellular-projecting ganglion cells and diffuse bipolar cells in the primate fovea. The European Journal of Neuroscience 37, 10721089.
Peterson, B.B. & Dacey, D.M. (2000). Morphology of wide-field bistratified and diffuse human retinal ganglion cells. Visual Neuroscience 17, 567578.
Petrusca, D., Grivich, M.I., Sher, A., Field, G.D., Gauthier, J.L., Greschner, M., Shlens, J., Chichilnisky, E.J. & Litke, A.M. (2007). Identification and characterization of a Y-like primate retinal ganglion cell type. The Journal of Neuroscience 27, 1101911027.
Puller, C. & Haverkamp, S. (2011). Bipolar cell pathways for color vision in non-primate dichromats. Visual Neuroscience 28, 5160.
Puller, C., Ondreka, K. & Haverkamp, S. (2011). Bipolar cells of the ground squirrel retina. The Journal of Comparative Neurology 519, 759774.
Ringo, J.L. & Wolbarsht, M.L. (1986). Spectral coding in cat retinal ganglion cell receptive fields. Journal of Neurophysiology 55, 320330.
Rockhill, R.L., Daly, F.J., MacNeil, M.A., Brown, S.P. & Masland, R.H. (2002). The diversity of ganglion cells in a mammalian retina. The Journal of Neuroscience 22, 38313843.
Rodieck, R.W. (1991). Which Cells Code for Color? In From Pigments to Perception, eds. Valberg, A. & Lee, B.B., pp. 8393. New YorkPlenum Press.
Rowe, M.H. & Cox, J.F. (1993). Spatial receptive-field structure of cat retinal W cells. Visual Neuroscience 10, 765779.
Schuurmans, R.P. & Zrenner, E. (1981). Responses of the blue sensitive cone system from the visual cortex and the arterially perfused eye in cat and monkey. Vision Research 21, 16111615.
Sher, A. & DeVries, S.H. (2012). A non-canonical pathway for mammalian blue-green color vision. Nature Neuroscience 15, 952953.
Shinomori, K. & Werner, J.S. (2012). Aging of human short-wave cone pathways. Proceedings of the National Academy of Sciences of the United States of America 109, 1342213427.
Siegert, S., Cabuy, E., Scherf, B.G., Kohler, H., Panda, S., Le, Y.Z., Fehling, H.J., Gaidatzis, D., Stadler, M.B. & Roska, B. (2012). Transcriptional code and disease map for adult retinal cell types. Nature Neuroscience 15, 487495, S481–482.
Silveira, L.C., Lee, B.B., Yamada, E.S., Kremers, J., Hunt, D.M., Martin, P.R. & Gomes, F.L. (1999). Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: Morphology and physiology. Visual Neuroscience 16, 333343.
Solomon, S.G., Lee, B.B., White, A.J., Ruttiger, L. & Martin, P.R. (2005). Chromatic organization of ganglion cell receptive fields in the peripheral retina. The Journal of Neuroscience 25, 45274539.
Tian, N. (2008). Synaptic activity, visual experience and the maturation of retinal synaptic circuitry. The Journal of Physiology 586, 43474355.
van Hateren, J.H., Ruttiger, L., Sun, H. & Lee, B.B. (2002). Processing of natural temporal stimuli by macaque retinal ganglion cells. The Journal of Neuroscience 22, 99459960.
Vaney, D.I., Levick, W.R. & Thibos, L.N. (1981). Rabbit retinal ganglion cells. Receptive field classification and axonal conduction properties. Experimental Brain Research 44, 2733.
Venkataramani, S. & Taylor, W.R. (2010). Orientation selectivity in rabbit retinal ganglion cells is mediated by presynaptic inhibition. The Journal of Neuroscience 30, 1566415676.
Werblin, F.S. (2011). The retinal hypercircuit: A repeating synaptic interactive motif underlying visual function. The Journal of Physiology 589, 36913702.
West, R.W. (1976). Light and electron microscopy of the ground squirrel retina: functional considerations. The Journal of Comparative Neurology 168, 355377.
Yamada, E.S., Bordt, A.S. & Marshak, D.W. (2005). Wide-field ganglion cells in macaque retinas. Visual Neuroscience 22, 383393.
Yeh, T., Lee, B.B. & Kremers, J. (1995). Temporal response of ganglion cells of the macaque retina to cone-specific modulation. Journal of the Optical Society of America A, Optics, Image Science, and Vision 12, 456464.
Yin, L., Smith, R.G., Sterling, P. & Brainard, D.H. (2009). Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins. The Journal of Neuroscience 29, 27062724.
Zrenner, E. (1983). Neurophysiological Aspects of Color Vision in Primates. New York: Springer-Verlag.
Zrenner, E. & Gouras, P. (1981). Characteristics of the blue sensitive cone mechanism in primate retinal ganglion cells. Vision Research 21, 16051609.

Keywords

Short-wavelength cone-opponent retinal ganglion cells in mammals

  • DAVID W. MARSHAK (a1) (a2) and STEPHEN L. MILLS (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed