Skip to main content Accessibility help
×
Home

The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones

  • SHINYA SATO (a1), RIKARD FREDERIKSEN (a2), M. CARTER CORNWALL (a2) and VLADIMIR J. KEFALOV (a1)

Abstract

Vertebrate rod and cone photoreceptors require continuous supply of chromophore for regenerating their visual pigments after photoactivation. Cones, which mediate our daytime vision, demand a particularly rapid supply of 11-cis retinal chromophore in order to maintain their function in bright light. An important contribution to this process is thought to be the chromophore precursor 11-cis retinol, which is supplied to cones from Müller cells in the retina and subsequently oxidized to 11-cis retinal as part of the retina visual cycle. However, the molecular identity of the cis retinol oxidase in cones remains unclear. Here, as a first step in characterizing this enzymatic reaction, we sought to determine the subcellular localization of this activity in salamander red cones. We found that the onset of dark adaptation of isolated salamander red cones was substantially faster when exposing directly their outer vs. their inner segment to 9-cis retinol, an analogue of 11-cis retinol. In contrast, this difference was not observed when treating the outer vs. inner segment with 9-cis retinal, a chromophore analogue which can directly support pigment regeneration. These results suggest, surprisingly, that the cis-retinol oxidation occurs in the outer segments of cone photoreceptors. Confirming this notion, pigment regeneration with exogenously added 9-cis retinol was directly observed in the truncated outer segments of cones, but not in rods. We conclude that the enzymatic machinery required for the oxidation of recycled cis retinol as part of the retina visual cycle is present in the outer segments of cones.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The retina visual cycle is driven by cis retinol oxidation in the outer segments of cones
      Available formats
      ×

Copyright

Corresponding author

*Address correspondence to: Vladimir J. Kefalov, Ph.D, Department of Ophthalmology and Visual Sciences, Washington University in Saint Louis, 660 S. Euclid Avenue, Saint Louis, MO 63110. E-mail: kefalov@wustl.edu

References

Hide All
Ala-Laurila, P., Cornwall, M.C., Crouch, R.K. & Kono, M. (2009). The action of 11-cis-retinol on cone opsins and intact cone photoreceptors. Journal of Biological Chemistry 284, 1649216500.
Ala-Laurila, P., Kolesnikov, A.V., Crouch, R.K., Tsina, E., Shukolyukov, S.A., Govardovskii, V.I., Koutalos, Y., Wiggert, B., Estevez, M.E. & Cornwall, M.C. (2006). Visual cycle: Dependence of retinol production and removal on photoproduct decay and cell morphology. Journal of General Physiology 128, 153169.
Bok, D., Ong, D.E. & Chytil, F. (1984). Immunocytochemical localization of cellular retinol binding protein in the rat retina. Investigative Ophthalmology & Visual Science 25, 877883.
Collery, R., McLoughlin, S., Vendrell, V., Finnegan, J., Crabb, J.W., Saari, J.C. & Kennedy, B.N. (2008). Duplication and divergence of zebrafish CRALBP genes uncovers novel role for RPE- and Muller-CRALBP in cone vision. Investigative Ophthalmology & Visual Science 49, 38123820.
Ebrey, T. & Koutalos, Y. (2001). Vertebrate photoreceptors. Progress in Retinal and Eye Research 20, 4994.
Frederiksen, R., Boyer, N.P., Nickle, B., Chakrabarti, K.S., Koutalos, Y., Crouch, R.K., Oprian, D. & Cornwall, M.C. (2012). Low aqueous solubility of 11-cis-retinal limits the rate of pigment formation and dark adaptation in salamander rods. Journal of General Physiology 139, 493505.
Garlipp, M.A. & Gonzalez-Fernandez, F. (2013). Cone outer segment and Muller microvilli pericellular matrices provide binding domains for interphotoreceptor retinoid-binding protein (IRBP). Exp. Eye Res. 113, 192202.
Haeseleer, F., Jang, G.F., Imanishi, Y., Driessen, C.A., Matsumura, M., Nelson, P.S. & Palczewski, K. (2002). Dual-substrate specificity short chain retinol dehydrogenases from the vertebrate retina. Journal of Biological Chemistry 277, 4553745546.
Harosi, F.I. (1975). Absorption spectra and linear dichroism of some amphibian photoreceptors. Journal of General Physiology 66, 357382.
Imamoto, Y. & Shichida, Y. (2014). Cone visual pigments. Biochimica et Biophysica Acta 1837, 664673.
Insinna, C., Daniele, L.L., Davis, J.A., Larsen, D.D., Kuemmel, C., Wang, J., Nikonov, S.S., Knox, B.E. & Pugh, E.N. Jr. (2012). An S-opsin knock-in mouse (F81Y) reveals a role for the native ligand 11-cis-retinal in cone opsin biosynthesis. Journal of Neuroscience 32, 80948104.
Jin, J., Jones, G.J. & Cornwall, M.C. (1994). Movement of retinal along cone and rod photoreceptors. Visual Neuroscience 11, 389399.
Jones, G.J., Crouch, R.K., Wiggert, B., Cornwall, M.C. & Chader, G.J. (1989). Retinoid requirements for recovery of sensitivity after visual-pigment bleaching in isolated photoreceptors. Proceedings of the National Academy of Sciences of the United States of America 86, 96069610.
Jones, G.J., Fein, A., MacNichol, E.F. Jr. & Cornwall, M.C. (1993). Visual pigment bleaching in isolated salamander retinal cones. Microspectrophotometry and light adaptation. Journal of General Physiology 102, 483502.
Kanan, Y., Kasus-Jacobi, A., Moiseyev, G., Sawyer, K., Ma, J.X. & Al-Ubaidi, M.R. (2008). Retinoid processing in cone and Muller cell lines. Experimental Eye Research 86, 344354.
Kawamura, S. & Murakami, M. (1989). Regulation of cGMP levels by guanylate cyclase in truncated frog rod outer segments. Journal of General Physiology 94, 649668.
Kaylor, J.J., Cook, J.D., Makshanoff, J., Bischoff, N., Yong, J. & Travis, G.H. (2014). Identification of the 11-cis-specific retinyl-ester synthase in retinal Muller cells as multifunctional O-acyltransferase (MFAT). Proceedings of the National Academy of Sciences of the United States of America 111, 73027307.
Kaylor, J.J., Yuan, Q., Cook, J., Sarfare, S., Makshanoff, J., Miu, A., Kim, A., Kim, P., Habib, S., Roybal, C.N., Xu, T., Nusinowitz, S. & Travis, G.H. (2013). Identification of DES1 as a vitamin A isomerase in Muller glial cells of the retina. Nature Chemical Biology 9, 3036.
Kefalov, V.J., Crouch, R.K. & Cornwall, M.C. (2001). Role of noncovalent binding of 11-cis-retinal to opsin in dark adaptation of rod and cone photoreceptors. Neuron 29, 749755.
Kefalov, V.J., Estevez, M.E., Kono, M., Goletz, P.W., Crouch, R.K., Cornwall, M.C. & Yau, K.W. (2005). Breaking the covalent bond—A pigment property that contributes to desensitization in cones. Neuron 46, 879890.
Kolesnikov, A.V., Maeda, A., Tang, P.H., Imanishi, Y., Palczewski, K. & Kefalov, V.J. (2015). Retinol dehydrogenase 8 and ATP-binding cassette transporter 4 modulate dark adaptation of M-cones in mammalian retina. Journal of Physiology 593, 49234941.
Kolesnikov, A.V., Tang, P.H., Parker, R.O., Crouch, R.K. & Kefalov, V.J. (2011). The mammalian cone visual cycle promotes rapid M/L-cone pigment regeneration independently of the interphotoreceptor retinoid-binding protein. Journal of Neuroscience 31, 79007909.
Koutalos, Y. & Cornwall, M.C. (2010). Microfluorometric measurement of the formation of all-trans-retinol in the outer segments of single isolated vertebrate photoreceptors. Methods in Molecular Biology 652, 129147.
Maeda, A., Maeda, T., Imanishi, Y., Kuksa, V., Alekseev, A., Bronson, J.D., Zhang, H., Zhu, L., Sun, W., Saperstein, D.A., Rieke, F., Baehr, W. & Palczewski, K. (2005). Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo. Journal of Biological Chemistry 280, 1882218832.
Makino, C.L. & Dodd, R.L. (1996). Multiple visual pigments in a photoreceptor of the salamander retina. Journal of General Physiology 108, 2734.
Makino, C.L., Groesbeek, M., Lugtenburg, J. & Baylor, D.A. (1999). Spectral tuning in salamander visual pigments studied with dihydroretinal chromophores. Biophysical Journal 77, 10241035.
Mata, N.L., Radu, R.A., Clemmons, R.C. & Travis, G.H. (2002). Isomerization and oxidation of vitamin A in cone-dominant retinas: A novel pathway for visual-pigment regeneration in daylight. Neuron 36, 6980.
Miyazono, S., Shimauchi-Matsukawa, Y., Tachibanaki, S. & Kawamura, S. (2008). Highly efficient retinal metabolism in cones. Proceedings of the National Academy of Sciences of the United States of America 105, 1605116056.
Rattner, A., Smallwood, P.M. & Nathans, J. (2000). Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol. Journal of Biological Chemistry 275, 1103411043.
Saari, J.C. (2012). Vitamin A metabolism in rod and cone visual cycles. Annual Review of Nutrition 32, 125145.
Sarantis, M. & Mobbs, P. (1992). The spatial relationship between Muller cell processes and the photoreceptor output synapse. Brain Research 584, 299304.
Sato, S., Fukagawa, T., Tachibanaki, S., Yamano, Y., Wada, A. & Kawamura, S. (2013). Substrate specificity and subcellular localization of the aldehyde-alcohol redox-coupling reaction in carp cones. Journal of Biological Chemistry 288, 3658936597.
Sato, S. & Kefalov, V.J. (2016). cis Retinol oxidation regulates photoreceptor access to the retina visual cycle and cone pigment regeneration. Journal of Physiology 594, 67536765.
Sato, S., Miyazono, S., Tachibanaki, S. & Kawamura, S. (2015). RDH13L, an enzyme responsible for the aldehyde-alcohol redox coupling reaction (AL–OL coupling reaction) to supply 11-cis retinal in the carp cone retinoid cycle. Journal of Biological Chemistry 290, 29832992.
Sherry, D.M., Bui, D.D. & Degrip, W.J. (1998). Identification and distribution of photoreceptor subtypes in the neotenic tiger salamander retina. Visual Neuroscience 15, 11751187.
Takemoto, N., Tachibanaki, S. & Kawamura, S. (2009). High cGMP synthetic activity in carp cones. Proceedings of the National Academy of Sciences of the United States of America 106, 1178811793.
Tang, P.H., Buhusi, M.C., Ma, J.X. & Crouch, R.K. (2011a). RPE65 is present in human green/red cones and promotes photopigment regeneration in an in vitro cone cell model. Journal of Neuroscience 31, 1861818626.
Tang, P.H., Kono, M., Koutalos, Y., Ablonczy, Z. & Crouch, R.K. (2013). New insights into retinoid metabolism and cycling within the retina. Progress in Retinal and Eye Research 32, 4863.
Tang, P.H., Wheless, L. & Crouch, R.K. (2011b). Regeneration of photopigment is enhanced in mouse cone photoreceptors expressing RPE65 protein. Journal of Neuroscience 31, 1040310411.
Wang, J.S., Estevez, M.E., Cornwall, M.C. & Kefalov, V.J. (2009). Intra-retinal visual cycle required for rapid and complete cone dark adaptation. Nature Neuroscience 12, 295302.
Wang, J.S. & Kefalov, V.J. (2011). The cone-specific visual cycle. Progress in Retinal and Eye Research 30, 115128.
Wang, J.S., Nymark, S., Frederiksen, R., Estevez, M.E., Shen, S.Q., Corbo, J.C., Cornwall, M.C. & Kefalov, V.J. (2014). Chromophore supply rate-limits mammalian photoreceptor dark adaptation. Journal of Neuroscience 34, 1121211221.
Wright, C.B., Redmond, T.M. & Nickerson, J.M. (2015). A history of the classical visual cycle. Progress in Molecular Biology and Translational Science 134, 433448.
Xue, Y., Shen, S.Q., Jui, J., Rupp, A.C., Byrne, L.C., Hattar, S., Flannery, J.G., Corbo, J.C. & Kefalov, V.J. (2015). CRALBP supports the mammalian retinal visual cycle and cone vision. Journal of Clinical Investigation 125, 727738.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed