Skip to main content Accessibility help

Reduced synaptic vesicle density and aberrant synaptic localization caused by a splice site mutation in the Rs1h gene



X-linked retinoschisis (XLRS) is a common form of inherited macular degeneration caused by mutations in the RS1 gene. Whereas the role of RS1 has been implicated in the synaptic structure as well as layer organization in the retina, the pathological effect of a defective RS1 gene on the synaptic interaction between photoreceptor cells and second-order neurons has not been thoroughly investigated. In this study, we perform a detailed characterization of the retinal synaptic phenotypes caused by a splice site mutation in the murine RS1 homolog (Rs1htmgc1). Electron microscopic analysis showed that presynaptic terminals of photoreceptor cells contain a lower areal density of synaptic vesicles in the Rs1htmgc1 retina. Examination of the synaptic interactions in the outer plexiform layer also revealed ectopic localization of photoreceptor cell presynaptic markers and elongation of neurites from postsynaptic neurons (bipolar and horizontal cells), which are observed in other mouse models with defective photoreceptor cell molecules. Consistent with these synaptic abnormalities, ERG analysis of young Rs1htmgc1 mice revealed attenuation of the b-wave with preservation of the a-wave. These results demonstrate that RS1H has functional significance in the morphology and function of the synapse between photoreceptors and second-order neurons. A developmental study from postnatal day (P) 15 through P19 showed that synaptic interactions form normally, and structural abnormalities occur after completion of synaptic formation suggesting that RS1H is important for the maintenance of this synaptic interaction. Thus, Rs1htmgc1 mice may serve as a new genetic model for human XLRS and other synaptic disorders.


Corresponding author

Address correspondence and reprint requests to: Akihiro Ikeda, Department of Medical Genetics, University of Wisconsin-Madison, Room 5350 Genetics/Biotech, 425-G Henry Mall, Madison, WI 53706, USA. E-mail:


Hide All


Bamji, S.X., Shimazu, K., Kimes, N., Huelsken, J., Birchmeier, W., Lu, B., & Reichardt, L.F. (2003). Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. Neuron 40, 719731.
Baumgartner, S., Hofmann, K., Chiquet-Ehrismann, R., & Bucher, P. (1998). The discoidin domain family revisited: new members from prokaryotes and a homology-based fold prediction. Protein Science 7, 16261631.
Bellocchio, E.E., Reimer, R.J., Fremeau, R.T., Jr., & Edwards, R.H. (2000). Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter. Science 289, 957960.
Blanks, J.C., Adinolfi, A.M., & Lolley, R.N. (1974). Synaptogenesis in the photoreceptor terminal of the mouse retina. Journal of Comparative Neurology 156, 8193.
Bradshaw, K., Newman, D., Allen, L., & Moore, A. (2003). Abnormalities of the scotopic threshold response correlated with gene mutation in X-linked retinoschisis and congenital stationary night blindness. Documenta Ophthalmologica 107, 155164.
Brose, N., Petrenko, A.G., Sudhof, T.C., & Jahn, R. (1992). Synaptotagmin: a calcium sensor on the synaptic vesicle surface. Science 256, 10211025.
Chang, B., Heckenlively, J.R., Bayley, P.R., Brecha, N.C., Davisson, M.T., Hawes, N.L., Hirano, A.A., Hurd, R.E., Ikeda, A., Johnson, B.A., McCall, M.A., Morgans, C.W., Nusinowitz, S., Peachey, N.S., Rice, D.S., Vessey, K.A., & Gregg, R.G. (2006). The nob2 mouse, a null mutation in Cacna1f: anatomical and functional abnormalities in the outer retina and their consequences on ganglion cell visual responses. Visual Neuroscience 23, 1124.
Claes, E., Seeliger, M., Michalakis, S., Biel, M., Humphries, P., & Haverkamp, S. (2004). Morphological characterization of the retina of the CNGA3(−/−)Rho(−/−) mutant mouse lacking functional cones and rods. Investigative Ophthalmology and Visual Science 45, 20392048.
Dhingra, A., Jiang, M., Wang, T.L., Lyubarsky, A., Savchenko, A., Bar-Yehuda, T., Sterling, P., Birnbaumer, L., & Vardi, N. (2002). Light response of retinal ON bipolar cells requires a specific splice variant of Galpha(o). Journal of Neuroscience 22, 48784884.
Dhingra, A., Lyubarsky, A., Jiang, M., Pugh, E.N., Jr., Birnbaumer, L., Sterling, P., & Vardi, N. (2000). The light response of ON bipolar neurons requires G[alpha]o. Journal of Neuroscience 20, 90539058.
Dick, O., Tom Dieck, S., Altrock, W.D., Ammermuller, J., Weiler, R., Garner, C.C., Gundelfinger, E.D., & Brandstatter, J.H. (2003). The presynaptic active zone protein bassoon is essential for photoreceptor ribbon synapse formation in the retina. Neuron 37, 775786.
Goldowitz, D., Frankel, W.N., Takahashi, J.S., Holtz-Vitaterna, M., Bult, C., Kibbe, W.A., Snoddy, J., Li, Y., Pretel, S., Yates, J., & Swanson, D.J. (2004). Large-scale mutagenesis of the mouse to understand the genetic bases of nervous system structure and function. Brain Research. Molecular Brain Research 132, 105115.
Grayson, C., Reid, S.N., Ellis, J.A., Rutherford, A., Sowden, J.C., Yates, J.R., Farber, D.B., & Trump, D. (2000). Retinoschisin, the X-linked retinoschisis protein, is a secreted photoreceptor protein, and is expressed and released by Weri-Rb1 cells. Human Molecular Genetics 9, 18731879.
Haeseleer, F., Imanishi, Y., Maeda, T., Possin, D.E., Maeda, A., Lee, A., Rieke, F., & Palczewski, K. (2004). Essential role of Ca2+-binding protein 4, a Cav1.4 channel regulator, in photoreceptor synaptic function. Nature Neuroscience 7, 10791087.
Hood, D.C. & Birch, D.G. (1996). Beta wave of the scotopic (rod) electroretinogram as a measure of the activity of human on-bipolar cells. Journal of the Optical Society of America A. Optics, Image Science, and Vision 13, 623633.
Jablonski, M.M., Dalke, C., Wang, X., Lu, L., Manly, K.F., Pretsch, W., Favor, J., Pardue, M.T., Rinchik, E.M., Williams, R.W., Goldowitz, D., & Graw, J. (2005a). An ENU-induced mutation in Rs1h causes disruption of retinal structure and function. Molecular Vision 11, 569581.
Jablonski, M.M., Wang, X., Lu, L., Miller, D.R., Rinchik, E.M., Williams, R.W., & Goldowitz, D. (2005b). The Tennessee Mouse Genome Consortium: identification of ocular mutants. Visual Neuroscience 22, 595604.
Koulen, P., Fletcher, E.L., Craven, S.E., Bredt, D.S., & Wassle, H. (1998). Immunocytochemical localization of the postsynaptic density protein PSD-95 in the mammalian retina. Journal of Neuroscience 18, 1013610149.
Lenzi, D. & Von Gersdorff, H. (2001). Structure suggests function: the case for synaptic ribbons as exocytotic nanomachines. Bioessays 23, 831840.
Mansergh, F., Orton, N.C., Vessey, J.P., Lalonde, M.R., Stell, W.K., Tremblay, F., Barnes, S., Rancourt, D.E., & Bech-Hansen, N.T. (2005). Mutation of the calcium channel gene Cacna1f disrupts calcium signaling, synaptic transmission and cellular organization in mouse retina. Human Molecular Genetics 14, 30353046.
Masu, M., Iwakabe, H., Tagawa, Y., Miyoshi, T., Yamashita, M., Fukuda, Y., Sasaki, H., Hiroi, K., Nakamura, Y., Shigemoto, R., Takada, M., Nakamura, K., Nakao, K., Katsuki, M., & Nakanishi, S. (1995). Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757765.
Molday, L.L., Hicks, D., Sauer, C.G., Weber, B.H., & Molday, R.S. (2001). Expression of X-linked retinoschisis protein RS1 in photoreceptor and bipolar cells. Investigative Ophthalmology and Visual Science 42, 816825.
Morgans, C.W., Bayley, P.R., Oesch, N.W., Ren, G., Akileswaran, L., & Taylor, W.R. (2005). Photoreceptor calcium channels: Insight from night blindness. Visual Neuroscience 22, 561568.
Murayama, K., Kuo, C.Y., & Sieving, P.A. (1991). Abnormal threshold ERG response in X-linked juvenile retinoschisis: Evidence or a proximal retinal origin of the human STR. Clinical Visual Science 6, 317322.
Nomura, A., Shigemoto, R., Nakamura, Y., Okamoto, N., Mizuno, N., & Nakanishi, S. (1994). Developmentally regulated postsynaptic localization of a metabotropic glutamate receptor in rat rod bipolar cells. Cell 77, 361369.
Park, S.J., Oh, S.J., Chung, J.W., & Chun, M.H. (2002). Tolerance of horizontal cells to excitotoxicity in the developing FVB/N mouse retina. Neuroreport 13, 20912095.
Peichl, L. & Gonzalez-Soriano, J. (1993). Unexpected presence of neurofilaments in axon-bearing horizontal cells of the mammalian retina. Journal of Neuroscience 13, 40914100.
Peichl, L. & Gonzalez-Soriano, J. (1994). Morphological types of horizontal cell in rodent retinae: A comparison of rat, mouse, gerbil, and guinea pig. Visual Neuroscience 11, 501517.
Piatigorsky, J. (2001). Dual use of the transcriptional repressor (CtBP2)/ribbon synapse (RIBEYE) gene: How prevalent are multifunctional genes? Trends in Neurosciences 24, 555557.
Pinto, L.H. & Enroth-Cugell, C. (2000). Tests of the mouse visual system. Mammalian Genome 11, 531536.
Pinto, L.H., Vitaterna, M.H., Siepka, S.M., Shimomura, K., Lumayag, S., Baker, M., Fenner, D., Mullins, R.F., Sheffield, V.C., Stone, E.M., Heffron, E., & Takahashi, J.S. (2004). Results from screening over 9000 mutation-bearing mice for defects in the electroretinogram and appearance of the fundus. Vision Research 44, 33353345.
Reid, S.N., Akhmedov, N.B., Piriev, N.I., Kozak, C.A., Danciger, M., & Farber, D.B. (1999). The mouse X-linked juvenile retinoschisis cDNA: Expression in photoreceptors. Gene 227, 257266.
The Retinosis Consortium (1998). Functional implications of the spectrum of mutations found in 234 cases with X-linked juvenile retinoschisis. The Retinoschisis Consortium. Human Molecular Genetics 7, 11851192.
Saszik, S.M., Robson, J.G., & Frishman, L.J. (2002). The scotopic threshold response of the dark-adapted electroretinogram of the mouse. Journal of Physiology 543, 899916.
Sauer, C.G., Gehrig, A., Warneke-Wittstock, R., Marquardt, A., Ewing, C.C., Gibson, A., Lorenz, B., Jurklies, B., & Weber, B.H. (1997). Positional cloning of the gene associated with X-linked juvenile retinoschisis. Nature Genetics 17, 164170.
Shelley, J., Dedek, K., Schubert, T., Feigenspan, A., Schultz, K., Hombach, S., Willecke, K., & Weiler, R. (2006). Horizontal cell receptive fields are reduced in connexin57-deficient mice. European Journal of Neuroscience 23, 31763186.
Strettoi, E., Mears, A.J., & Swaroop, A. (2004). Recruitment of the rod pathway by cones in the absence of rods. Journal of Neuroscience 24, 75767582.
Strettoi, E., Porciatti, V., Falsini, B., Pignatelli, V., & Rossi, C. (2002). Morphological and functional abnormalities in the inner retina of the rd/rd mouse. Journal of Neuroscience 22, 54925504.
Tagawa, Y., Sawai, H., Ueda, Y., Tauchi, M., & Nakanishi, S. (1999). Immunohistological studies of metabotropic glutamate receptor subtype 6-deficient mice show no abnormality of retinal cell organization and ganglion cell maturation. Journal of Neuroscience 19, 25682579.
Takada, Y., Fariss, R.N., Tanikawa, A., Zeng, Y., Carper, D., Bush, R., & Sieving, P.A. (2004). A retinal neuronal developmental wave of retinoschisin expression begins in ganglion cells during layer formation. Investigative Ophthalmology and Visual Science 45, 33023312.
Von Gersdorff, H. (2001). Synaptic ribbons: Versatile signal transducers. Neuron 29, 710.
Wang, P., Yang, G., Mosier, D.R., Chang, P., Zaidi, T., Gong, Y.D., Zhao, N.M., Dominguez, B., Lee, K.F., Gan, W.B., & Zheng, H. (2005). Defective neuromuscular synapses in mice lacking amyloid precursor protein (APP) and APP-Like protein 2. Journal of Neuroscience 25, 12191225.
Weber, B.H., Schrewe, H., Molday, L.L., Gehrig, A., White, K.L., Seeliger, M.W., Jaissle, G.B., Friedburg, C., Tamm, E., & Molday, R.S. (2002). Inactivation of the murine X-linked juvenile retinoschisis gene, Rs1h, suggests a role of retinoschisin in retinal cell layer organization and synaptic structure. Proceedings of the National Academy of Sciences of the United States of America 99, 62226227.
Zeng, Y., Takada, Y., Kjellstrom, S., Hiriyanna, K., Tanikawa, A., Wawrousek, E., Smaoui, N., Caruso, R., Bush, R.A., & Sieving, P.A. (2004). RS-1 Gene Delivery to an Adult Rs1h Knockout Mouse Model Restores ERG b-Wave with Reversal of the Electronegative Waveform of X-Linked Retinoschisis. Investigative Ophthalmology and Visual Science 45, 32793285.


Reduced synaptic vesicle density and aberrant synaptic localization caused by a splice site mutation in the Rs1h gene



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed