Skip to main content Accessibility help
×
Home

Protein partners of dynamin-1 in the retina

  • GREGORY H. GROSSMAN (a1) (a2), LINDSEY A. EBKE (a1) (a2), CRAIG D. BEIGHT (a1) (a2), GEENG-FU JANG (a1) (a2), JOHN W. CRABB (a1) (a2) (a3) (a4) and STEPHANIE A. HAGSTROM (a1) (a2) (a3) (a4)...

Abstract

Dynamin proteins are involved in vesicle generation, providing mechanical force to excise newly formed vesicles from membranes of cellular compartments. In the brain, dynamin-1, dynamin-2, and dynamin-3 have been well studied; however, their function in the retina remains elusive. A retina-specific splice variant of dynamin-1 interacts with the photoreceptor-specific protein Tubby-like protein 1 (Tulp1), which when mutated causes an early onset form of autosomal recessive retinitis pigmentosa. Here, we investigated the role of the dynamins in the retina, using immunohistochemistry to localize dynamin-1, dynamin-2, and dynamin-3 and immunoprecipitation followed by mass spectrometry to explore dynamin-1 interacting proteins in mouse retina. Dynamin-2 is primarily confined to the inner segment compartment of photoreceptors, suggesting a role in outer segment protein transport. Dynamin-3 is present in the terminals of photoreceptors and dendrites of second-order neurons but is most pronounced in the inner plexiform layer where second-order neurons relay signals from photoreceptors. Dynamin-1 appears to be the dominant isoform in the retina and is present throughout the retina and in multiple compartments of the photoreceptor cell. This suggests that it may function in multiple cellular pathways. Surprisingly, dynamin-1 expression and localization did not appear to be disrupted in tulp1−/− mice. Immunoprecipitation experiments reveal that dynamin-1 associates primarily with proteins involved in cytoskeletal-based membrane dynamics. This finding is confirmed by western blot analysis. Results further implicate dynamin-1 in vesicular protein transport processes relevant to synaptic and post-Golgi pathways and indicate a possible role in photoreceptor stability.

Copyright

Corresponding author

*Address correspondence to: Stephanie A. Hagstrom, Ophthalmic Research—i31, Cleveland Clinic Cole Eye Institute, 9500 Euclid Avenue, Cleveland, OH 44195. E-mail: hagstrs@ccf.org

References

Hide All
Adamus, G., Zam, Z.S., Arendt, A., Palczewski, K., McDowell, J.H. & Hargrave, P.A. (1991). Anti-rhodopsin monoclonal antibodies of defined specificity: Characterization and application. Vision Research 31, 1731.
Anggono, V. & Robinson, P.J. (2007). Syndapin I and endophilin I bind overlapping proline-rich regions of dynamin I: Role in synaptic vesicle endocytosis. Journal of Neurochemistry 102, 931943.
Anitei, M. & Hoflack, B. (2012). Bridging membrane and cytoskeleton dynamics in the secretory and endocytic pathways. Nature Cell Biology 14, 1119.
Cao, H., Garcia, F. & McNiven, M.A. (1998). Differential distribution of dynamin isoforms in mammalian cells. Molecular Biology of the Cell 9, 25952609.
Crabb, J.W., Miyagi, M., Gu, X., Shadrach, K., West, K.A., Sakaguchi, H., Kamei, M., Hasan, A., Yan, L., Rayborn, M.E., Salomon, R.G. & Hollyfield, J.G. (2002). Drusen proteome analysis: An approach to the etiology of age-related macular degeneration. Proceedings of the National Academy of Science of the United States of America 99, 1468214687.
Daley, W.P., Gulfo, K.M., Sequeira, S.J. & Larsen, M. (2009). Identification of a mechanochemical checkpoint and negative feedback loop regulating branching morphogenesis. Developmental Biology 336, 169182.
Doherty, G.J. & McMahon, H.T. (2008). Mediation, modulation, and consequences of membrane-cytoskeleton interactions. Annual Review of Biophysics 37, 6595.
Fath, K.R., Trimbur, G.M. & Burgess, D.R. (1997). Molecular motors and a spectrin matrix associate with Golgi membranes in vitro. The Journal of Cell Biology 139, 11691181.
Ferguson, S.M., Brasnjo, G., Hayashi, M., Wolfel, M., Collesi, C., Giovedi, S., Raimondi, A., Gong, L.W., Ariel, P., Paradise, S., O’Toole, E., Flavell, R., Cremona, O., Miesenbock, G., Ryan, T.A. & De Camilli, P. (2007). A selective activity-dependent requirement for dynamin 1 in synaptic vesicle endocytosis. Science 316, 570574.
Ferguson, S.M. & De Camilli, P. (2012). Dynamin, a membrane-remodelling GTPase. Nature Reviews Molecular cell Biology 13, 7588.
Goldberg, A.F., Ritter, L.M., Khattree, N., Peachey, N.S., Fariss, R.N., Dang, L., Yu, M. & Bottrell, A.R. (2007). An intramembrane glutamic acid governs peripherin/rds function for photoreceptor disk morphogenesis. Investigative Ophthalmology and Visual Science 48, 29752986.
Gray, N.W., Fourgeaud, L., Huang, B., Chen, J., Cao, H., Oswald, B.J., Hemar, A. & McNiven, M.A. (2003). Dynamin 3 is a component of the postsynapse, where it interacts with mGluR5 and Homer. Current Biology 13, 510515.
Grossman, G.H., Beight, C., Ebke, L.E. & Hagstrom, S.A. (2012a). Interaction of Tulp1 and the microtubule-associated proteins in the murine retina. Advances in Experimental Medicine and Biology, in press.
Grossman, G.H., Pauer, G.J., Hoppe, G. & Hagstrom, S.A. (2012b). Isolating photoreceptor compartment-specific protein complexes for subsequent proteomic analysis. Advances in Experimental Medicine and Biology 723, 701707.
Grossman, G.H., Pauer, G.J., Narendra, U., Peachey, N.S. & Hagstrom, S.A. (2009). Early synaptic defects in tulp1−/− mice. Investigative Ophthalmology & Visual Science 50, 30743083.
Grossman, G.H., Watson, R.F., Pauer, G.J., Bollinger, K. & Hagstrom, S.A. (2011). Immunocytochemical evidence of Tulp1-dependent outer segment protein transport pathways in photoreceptor cells. Experimental Eye Research 93, 658668.
Hagstrom, S.A., Adamian, M., Scimeca, M., Pawlyk, B.S., Yue, G. & Li, T. (2001). A role for the Tubby-like protein 1 in rhodopsin transport. Investigative Ophthalmology & Visual Science 42, 19551962.
Hagstrom, S.A., Duyao, M., North, M.A. & Li, T. (1999). Retinal degeneration in tulp1−/− mice: vesicular accumulation in the interphotoreceptor matrix. Investigative Ophthalmology & Visual Science 40, 27952802.
Hagstrom, S.A., North, M.A., Nishina, P.L., Berson, E.L. & Dryja, T.P. (1998). Recessive mutations in the gene encoding the tubby-like protein TULP1 in patients with retinitis pigmentosa. Nature Genettics 18, 174176.
Halpain, S. & Dehmelt, L. (2006). The MAP1 family of microtubule-associated proteins. Genome Biology 7, 224.
Han, M.Y., Kosako, H., Watanabe, T. & Hattori, S. (2007). Extracellular signal-regulated kinase/mitogen-activated protein kinase regulates actin organization and cell motility by phosphorylating the actin cross-linking protein EPLIN. Molecular and Cell Biology 27, 81908204.
Holroyd, P., Lang, T., Wenzel, D., De Camilli, P. & Jahn, R. (2002). Imaging direct, dynamin-dependent recapture of fusing secretory granules on plasma membrane lawns from PC12 cells. Proceedings of the National Academy of Science of the United States of America 99, 1680616811.
Insinna, C. & Besharse, J.C. (2008). Intraflagellar transport and the sensory outer segment of vertebrate photoreceptors. Developmental Dynamics 237, 19821992.
Jaiswal, J.K., Rivera, V.M. & Simon, S.M. (2009). Exocytosis of post-Golgi vesicles is regulated by components of the endocytic machinery. Cell 137, 13081319.
Jeub, M., Bitoun, M., Guicheney, P., Kappes-Horn, K., Strach, K., Druschky, K.F., Weis, J. & Fischer, D. (2008). Dynamin 2-related centronuclear myopathy: clinical, histological and genetic aspects of further patients and review of the literature. Clinical Neuropathology 27, 430438.
Kaibuchi, K., Kuroda, S. & Amano, M. (1999). Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells. Annual Review of Biochemistry 68, 459486.
Kelly, B.L., Vassar, R. & Ferreira, A. (2005). Beta-amyloid-induced dynamin 1 depletion in hippocampal neurons. A potential mechanism for early cognitive decline in Alzheimer disease. The Journal of Biological Chemistry 280, 3174631753.
Kinuta, M., Yamada, H., Abe, T., Watanabe, M., Li, S.A., Kamitani, A., Yasuda, T., Matsukawa, T., Kumon, H. & Takei, K. (2002). Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Proceedings of the National Academy of Science of the United States of America 99, 28422847.
Kitamoto, J., Libby, R.T., Gibbs, D., Steel, K.P. & Williams, D.S. (2005). Myosin VI is required for normal retinal function. Experimental Eye Research 81, 116120.
Linton, J.D., Holzhausen, L.C., Babai, N., Song, H., Miyagishima, K.J., Stearns, G.W., Lindsay, K., Wei, J., Chertov, A.O., Peters, T.A., Caffe, R., Pluk, H., Seeliger, M.W., Tanimoto, N., Fong, K., Bolton, L., Kuok, D.L., Sweet, I.R., Bartoletti, T.M., Radu, R.A., Travis, G.H., Zagotta, W.N., Townes-Anderson, E., Parker, E., Van der Zee, C.E., Sampath, A.P., Sokolov, M., Thoreson, W.B. & Hurley, J.B. (2010). Flow of energy in the outer retina in darkness and in light. Proceedings of the National Academy of Science of the United States of America 107, 85998604.
Liu, Q., Tan, G., Levenkova, N., Li, T., Pugh, E.N. Jr., Rux, J.J., Speicher, D.W. & Pierce, E.A. (2007). The proteome of the mouse photoreceptor sensory cilium complex. Molecular & Cellular Proteomics 6, 12991317.
Liu, X., Udovichenko, I.P., Brown, S.D., Steel, K.P. & Williams, D.S. (1999). Myosin VIIa participates in opsin transport through the photoreceptor cilium. The Journal of Neuroscience 19, 62676274.
Lundmark, R. & Carlsson, S.R. (2003). Sorting nexin 9 participates in clathrin-mediated endocytosis through interactions with the core components. The Journal of Biological Chemistry 278, 4677246781.
Lundmark, R., Doherty, G.J., Howes, M.T., Cortese, K., Vallis, Y., Parton, R.G. & McMahon, H.T. (2008). The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Current Biology 18, 18021808.
Maddox, D.M., Ikeda, S., Ikeda, A., Zhang, W., Krebs, M.P., Nishina, P.M. & Naggert, J.K. (2012). An allele of microtubule-associated protein 1A (Mtap1a) reduces photoreceptor degeneration in Tulp1 and Tub mutant mice. Investigative Ophthalmology & Visual Science 53, 16631669.
McNiven, M.A., Cao, H., Pitts, K.R. & Yoon, Y. (2000). The dynamin family of mechanoenzymes: Pinching in new places. Trends in Biochemical Sciences 25, 115120.
Mooren, O.L., Galletta, B.J. & Cooper, J.A. (2012). Roles for actin assembly in endocytosis. Annual Review of Biochemistry 81, 661686.
Nakajima, T., Ochi, S., Oda, C., Ishii, M. & Ogawa, K. (2011). Ischemic preconditioning attenuates of ischemia-induced degradation of spectrin and tau: Implications for ischemic tolerance. Neurological Sciences 32, 229239.
Noiges, R., Eichinger, R., Kutschera, W., Fischer, I., Nemeth, Z., Wiche, G. & Propst, F. (2002). Microtubule-associated protein 1A (MAP1A) and MAP1B: Light chains determine distinct functional properties. The Journal of Neuroscience 22, 21062114.
Qualmann, B. & Mellor, H. (2003). Regulation of endocytic traffic by Rho GTPases. Biochemical Journal 371, 233241.
Raimondi, A., Ferguson, S.M., Lou, X., Armbruster, M., Paradise, S., Giovedi, S., Messa, M., Kono, N., Takasaki, J., Cappello, V., O’Toole, E., Ryan, T.A. & De Camilli, P. (2011). Overlapping role of dynamin isoforms in synaptic vesicle endocytosis. Neuron 70, 11001114.
Rozas, J.L., Gomez-Sanchez, L., Tomas-Zapico, C., Lucas, J.J. & Fernandez-Chacon, R. (2011). Increased neurotransmitter release at the neuromuscular junction in a mouse model of polyglutamine disease. The Journal of Neuroscience 31, 11061113.
Schwartz, J.H. (1979). Axonal transport: Components, mechanisms, and specificity. Annual Review of Neuroscience 2, 467504.
Smirnova, E., Shurland, D.L., Newman-Smith, E.D., Pishvaee, B. & van der Bliek, A.M. (1999). A model for dynamin self-assembly based on binding between three different protein domains. The Journal of Biological Chemistry 274, 1494214947.
Stow, J.L. & Heimann, K. (1998). Vesicle budding on Golgi membranes: Regulation by G proteins and myosin motors. Biochimica et Biophysica Acta 1404, 161171.
Sun, T.X., Van Hoek, A., Huang, Y., Bouley, R., McLaughlin, M. & Brown, D. (2002). Aquaporin-2 localization in clathrin-coated pits: Inhibition of endocytosis by dominant-negative dynamin. American Journal of Physiology—Renal Physiology 282, F998F1011.
Syamaladevi, D.P., Spudich, J.A. & Sowdhamini, R. (2012). Structural and functional insights on the Myosin superfamily. Bioinformatics and Biology Insights 6, 1121.
Tanabe, K. & Takei, K. (2009). Dynamic instability of microtubules requires dynamin 2 and is impaired in a Charcot-Marie-Tooth mutant. The Journalof Cell Biology 185, 939948.
Vaid, K.S., Guttman, J.A., Babyak, N., Deng, W., McNiven, M.A., Mochizuki, N., Finlay, B.B. & Vogl, A.W. (2007). The role of dynamin 3 in the testis. Journal of Cellular Physiology 210, 644654.
van der Bliek, A.M. & Meyerowitz, E.M. (1991). Dynamin-like protein encoded by the Drosophila shibire gene associated with vesicular traffic. Nature 351, 411414.
Warner, C.L., Stewart, A., Luzio, J.P., Steel, K.P., Libby, R.T., Kendrick-Jones, J. & Buss, F. (2003). Loss of myosin VI reduces secretion and the size of the Golgi in fibroblasts from Snell’s waltzer mice. The EMBO Journal 22, 569579.
Werner, H.B., Kuhlmann, K., Shen, S., Uecker, M., Schardt, A., Dimova, K., Orfaniotou, F., Dhaunchak, A., Brinkmann, B.G., Mobius, W., Guarente, L., Casaccia-Bonnefil, P., Jahn, O., Nave, K.A. (2007). Proteolipid protein is required for transport of sirtuin 2 into CNS myelin. The Journal of Neuroscience 27, 77177730.
Whitehead, J.L., Wang, S.Y., Bost-Usinger, L., Hoang, E., Frazer, K.A. & Burnside, B. (1999). Photoreceptor localization of the KIF3A and KIF3B subunits of the heterotrimeric microtubule motor kinesin II in vertebrate retina. Experimental Eye Research 69, 491503.
Xi, Q., Pauer, G.J., Ball, S.L., Rayborn, M., Hollyfield, J.G., Peachey, N.S., Crabb, J.W. & Hagstrom, S.A. (2007). Interaction between the photoreceptor-specific tubby-like protein 1 and the neuronal-specific GTPase dynamin-1. Investigative Ophthalmology & Visual Science 48, 28372844.
Xi, Q., Pauer, G.J., Marmorstein, A.D., Crabb, J.W. & Hagstrom, S.A. (2005). Tubby-like protein 1 (TULP1) interacts with F-actin in photoreceptor cells. Investigative Ophthalmology & Visual Science 46, 47544761.
Xi, Q., Pauer, G.J., West, K.A., Crabb, J.W. & Hagstrom, S.A. (2003). Retinal degeneration caused by mutations in TULP1. Advances in Experimental Medicine and Biology 533, 303308.
Yang, J., Liu, X., Yue, G., Adamian, M., Bulgakov, O. & Li, T. (2002). Rootletin, a novel coiled-coil protein, is a structural component of the ciliary rootlet. The Journal of Cell Biology 159, 431440.
Zuchner, S., Noureddine, M., Kennerson, M., Verhoeven, K., Claeys, K., De Jonghe, P, Merory, J., Oliveira, S.A., Speer, M.C., Stenger, J.E., Walizada, G., Zhu, D., Pericak-Vance, M.A., Nicholson, G., Timmerman, V. & Vance, J.M. (2005). Mutations in the pleckstrin homology domain of dynamin 2 cause dominant intermediate Charcot-Marie-Tooth disease. Nature Genetics 37, 289294.

Keywords

Related content

Powered by UNSILO
Type Description Title
WORD
Supplementary materials

Grossman Supplementary Material
Table 1

 Word (657 KB)
657 KB
WORD
Supplementary materials

Grossman Supplementary Material
Table 2

 Word (333 KB)
333 KB
WORD
Supplementary materials

Grossman Supplementary Material
Table 3

 Word (515 KB)
515 KB

Protein partners of dynamin-1 in the retina

  • GREGORY H. GROSSMAN (a1) (a2), LINDSEY A. EBKE (a1) (a2), CRAIG D. BEIGHT (a1) (a2), GEENG-FU JANG (a1) (a2), JOHN W. CRABB (a1) (a2) (a3) (a4) and STEPHANIE A. HAGSTROM (a1) (a2) (a3) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.