Skip to main content Accessibility help
×
Home

Primate color vision: A comparative perspective

  • GERALD H. JACOBS (a1)

Abstract

Thirty years ago virtually everything known about primate color vision derived from psychophysical studies of normal and color-defective humans and from physiological investigations of the visual system of the macaque monkey, the most popular of human surrogates for this purpose. The years since have witnessed much progress toward the goal of understanding this remarkable feature of primate vision. Among many advances, investigations focused on naturally occurring variations in color vision in a wide range of nonhuman primate species have proven to be particularly valuable. Results from such studies have been central to our expanding understanding of the interrelationships between opsin genes, cone photopigments, neural organization, and color vision. This work is also yielding valuable insights into the evolution of color vision.

Copyright

Corresponding author

*Address correspondence and reprint requests to: Gerald H. Jacobs, Neuroscience Research Institute, University of California, Santa Barbara, CA 93106. E-mail: jacobs@psych.ucsb.edu

References

Hide All
Arrese, C.A., Beazley, L.D. & Neumeyer, C. (2006). Behavioural evidence of marsupial trichromacy. Current Biology 16, R193R194.
Arrese, C.A., Hart, N.S., Thomas, N., Beazley, L.D. & Shand, J. (2002). Trichromacy in Australian marsupials. Current Biology 12, 657660.
Bearder, S.K., Nekaris, K.A.I. & Curtis, D.J. (2006). A re-evaluation of the role of vision in the activity and communication of nocturnal primates. Folia Primatologica 77, 5071.
Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., MacPhee, R.D.E., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. (2007). The delayed rise of present-day mammals. Nature 446, 507512.
Boissinot, S., Tan, Y., Shyue, S.-K., Schneider, H., Sampaio, I., Neiswanger, K., Hewett-Emmett, D. & Li, W.-H. (1998). Origins and antiquity of X-linked triallelic color vision systems in New World monkeys. Proceedings of the National Academy of Sciences U S A 95, 1374913754.
Bowmaker, J.K. (1990). Cone visual pigments in monkeys and humans. In Advances in Photoreception, ed. Committee on Vision, pp. 1930. Washington, DC: National Academy Press.
Bowmaker, J.K. (2008). Evolution of vertebrate visual pigments. Vision Research 48, 20222041.
Bowmaker, J.K., Astell, S., Hurst, D.M. & Mollon, J.D. (1991). Photosensitive and photostable pigments in the retinae of Old World monkeys. Journal of Experimental Biology 156, 119.
Boycott, B. & Wässle, H. (1999). Parallel processing in the mammalian retina. Investigative Ophthalmology and Visual Science 40, 13131327.
Brown, P.K. & Wald, G. (1963). Visual pigments in human and monkey retinas. Nature 200, 3743.
Buck, S.L. (2003). Rod-cone interactions in human vision. In The Visual Neurosciences, Vol. 1, ed. Chalupa, L.M. & Werner, J.S., pp. 863878. Cambridge, MA: MIT Press.
Buck, S.L., Knight, R., Fowler, G. & Hunt, B. (1998). Rod influence on hue-scaling functions. Vision Research 38, 32593263.
Calkins, D.J. (2001). Seeing with S cones. Progress in Retinal and Eye Research 20, 255287.
Cao, D., Poicorny, J. & Smith, V.C. (2005). Matching rod percepts with cone stimuli. Vision Research 45, 21192128.
Collin, S.P. & Trezise, A.E.O. (2004). The origins of colour vision in vertebrates. Clinical and Experimental Optometry 87, 217233.
Dacey, D.M. (1993). The mosaic of retinal ganglion cells in the human retina. Journal of Neuroscience 13, 53245355.
Dacey, D.M. & Lee, B.B. (1994). The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.
Darwin, C. (1859). On the Origin of Species. London: John Murray.
Davies, W.L., Carvalho, L.S., Cowing, J.A., Beazley, L.D., Hunt, D.M. & Arrese, C. (2007). Visual pigments of the platypus: A novel route to mammalian colour vision. Current Biology 17, R161R163.
Dominy, N.J. (2004). Color as an indicator of food quality to anthropoid primates: Ecological evidence and an evolutionary scenario. In Anthropoid Origins: New Visions, ed. Ross, C.F. & Kay, R.F., pp. 615644. New York: Kluwer Academic/Plenum Publishers.
Dulai, K.S., von Dornum, M., Mollon, J.D. & Hunt, D.M. (1999). The evolution of trichromatic color vision by opsin gene duplication in New World and Old World primates. Genome Research 9, 629638.
Fernandez-Duque, E. (2003). Influences of moonlight, ambient temperature, and food availability on the diurnal and nocturnal activity of owl monkeys (Aotus azarai). Behavioral Ecology and Sociobiology 54, 431440.
Fletcher, R. & Voke, J. (1985). Defective Colour Vision: Fundamentals, Diagnosis and Management. Bristol, CT: Adam Hilger Ltd.
Gimenez, M. & Fernandez-Duque, E. (2003). Summer and winter diet of night monkeys in the gallery and thorn forests of the Argentinean Chaco. Revista de Etologia 5,Supplement 164.
Goodchild, A.K., Gosh, K.K. & Martin, P.R. (1996). Comparison of photoreceptor spatial density and ganglion cell morphology in the retina of human, macaque monkey, cat, and the marmoset (Callithrix jacchus). Journal of Comparative Neurology 366, 5575.
Hart, N.S. & Hunt, D.M. (2007). Avian visual pigments: Characteristics, spectral tuning, and evolution. The American Naturalist 169, Supplement, S70/a26.
Haverkamp, S., Wässle, H., Duebel, J., Kuner, T., Augustine, G.J., Feng, G. & Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. Journal of Neuroscience 25, 54385445.
Heesy, C.P. & Ross, C.F. (2001). Evolution of activity patterns and chromatic vision in primates: Morphometrics, genetics and cladistics. Journal of Human Evolution 40, 111149.
Hendrickson, A., Djajadi, H.R., Nakamura, L., Possin, D.E. & Sajuthi, D. (2000). Nocturnal tarsier retina has both short and long/medium-wavelength cones in an unusual topography. Journal of Comparative Neurology 424, 718730.
Hunt, D.M. (2006). Molecular evolution of colour vision in primates. Journal of Vision 6, 34a.
Hunt, D.M., Cowing, J.A., Wilkie, S.E., Parry, J.W.L., Poopalasundaram, S. & Bowmaker, J.K. (2004). Divergent mechanisms for the tuning of shortwave sensitive visual pigments in vertebrates. Photochemical and Photobiological Sciences 3, 713720.
Hunt, D.M., Jacobs, G.H. & Bowmaker, J.K. (2005). The genetics and evolution of primate visual pigments. In The Primate Visual System: A Comparative Approach, ed. Kremers, J., pp. 73126. Chichester, UK: John Wiley & Sons Ltd.
Hunt, D.M., Williams, A.J., Bowmaker, J.K. & Mollon, J.D. (1993). Structure and evolution of polymorphic photopigment gene of the marmoset. Vision Research 33, 147154.
Jacobs, G.H. (1993). The distribution and nature of colour vision among the mammals. Biological Reviews 68, 413471.
Jacobs, G.H. (1996). Primate photopigments and primate color vision. Proceedings of the National Academy of Sciences U S A 93, 577581.
Jacobs, G.H. (1998). A perspective on color vision in platyrrhine monkeys. Vision Research 38, 33073313.
Jacobs, G.H. (2007). New World monkeys and color. International Journal of Primatology 28, 729759.
Jacobs, G.H. & Deegan, J.F. II. (1993). Photopigments underlying color vision in ringtail lemurs (Lemur catta) and brown lemurs (Eulemur fulvus). American Journal of Primatology 30, 243256.
Jacobs, G.H. & Deegan, J.F. II. (1999). Uniformity of colour vision in Old World monkeys. Proceedings of the Royal Society of London B 266, 20232028.
Jacobs, G.H. & Deegan, J.F. II. (2005). Polymorphic monkeys with more than three M/L cone types. Journal of the Optical Society of America A 22, 20722080.
Jacobs, G.H., Deegan, J.F. II, Neitz, J.A., Crognale, M.A. & Neitz, M. (1993). Photopigments and color vision in the nocturnal monkey, Aotus. Vision Research 33, 17731783.
Jacobs, G.H., Deegan, J.F. II, Tan, Y. & Li, W.-H. (2002). Opsin gene and photopigment polymorphism in a prosimian primate. Vision Research 42, 1118.
Jacobs, G.H., Fenwick, J.C., Calderone, J.B. & Deeb, S.S. (1999). Human cone pigment expressed in transgenic mice yields altered vision. Journal of Neuroscience 19, 32583265.
Jacobs, G.H., Neitz, M., Deegan, J.F. & Neitz, J. (1996 a). Trichromatic colour vision in New World monkeys. Nature 382, 156158.
Jacobs, G.H., Neitz, M. & Neitz, J. (1996 b). Mutations in S-cone pigment genes and the absence of colour vision in two species of nocturnal primate. Proceedings of the Royal Society of London B 263, 705710.
Jacobs, G.H. & Williams, G.A. (2001). The prevalence of defective color vision in Old World monkeys and apes. Color Research and Application 26, S123S127.
Jacobs, G.H. & Williams, G.A. (2006). L and M cone proportions in polymorphic New World monkeys. Visual Neuroscience 23, 365370.
Jacobs, G.H., Williams, G.A., Cahill, H. & Nathans, J. (2007). Emergence of novel color vision in mice engineered to express a human cone photopigment. Science 315, 17231725.
Kainz, P.M., Neitz, J. & Neitz, M. (1998). Recent evolution of uniform trichromacy in a New World monkey. Vision Research 38, 33153320.
Kawamura, S. & Kubotera, N. (2004). Ancestral loss of short wave-sensitive cone visual pigment in lorsiform prosimians, contrasting with its strict conservation in other prosimians. Journal of Molecular Evolution 58, 314321.
Kelber, A. & Roth, L.S.V. (2006). Nocturnal colour vision—Not as rare as we might think. Journal of Experimental Biology 209, 781788.
Kielan-Jaworowska, Z., Cifelli, R.L. & Luo, Z.-X. (2004). Mammals from the Age of Dinosaurs: Origins, Evolution, and Structure. New York: Columbia University Press.
Kremers, J. & Lee, B.B. (1998). Comparative retinal physiology in Anthropoids. Vision Research 38, 33393344.
Kryger, Z., Galli-Resta, L., Jacobs, G.H. & Reese, B.E. (1998). The topography of rod and cone photoreceptors in the retina of the ground squirrel. Visual Neuroscience 15, 685691.
Lee, B.B. (2004). Paths to colour in the retina. Clinical and Experimental Optometry 87, 239248.
Levenson, D.H., Fernandez-Duque, E., Evans, S. & Jacobs, G.H. (2007). Mutational changes in S-cone opsin genes common to both nocturnal and cathemeral Aotus monkeys. American Journal of Primatology 69, 757765.
Li, W. & DeVries, S.H. (2006). Bipolar cell pathways for color and human vision in a dichromatic mammalian retina. Nature Neuroscience 9, 669675.
Macdonald, D., ed. (2001). The New Encyclopedia of Mammals. Oxford: Oxford University Press.
MacNeil, M.A. & Gaul, P.A. (2008). Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones. Journal of Comparative Neurology 506, 615.
Makous, W. (2004). Scotopic vision. In The Visual Neurosciences, Vol. 1, ed. Chalupa, L.M. & Werner, J.S., pp. 838850. Cambridge, MA: MIT Press.
Marks, W.B., Dobelle, W.H. & MacNichol, E.F.J. (1964). Visual pigments of single primate cones. Science 143, 11811183.
Martin, P.R. (1998). Colour processing in the retina: Recent progress. Journal of Physiology 513, 631638.
Martin, R.D. (1990). Primate Origins and Evolution. Princeton, NJ: Princeton University Press.
Martin, R.D. & Ross, C.F. (2005). The evolutionary and ecological context of primate vision. In The Primate Visual System: A Comparative Approach, ed. Kremers, J.West Sussex, UK: John Wiley & Sons, Ltd.
Martin, R.D., Soligo, C. & Tavare, S. (2007). Primate origins: Implications of a cretaceous ancestry. Folia Primatologica 78, 277296.
Masland, R.H. (2001). The fundamental plan of the retina. Nature Neuroscience 4, 877886.
McMahon, M.J., Lankheet, M.J., Lennie, P. & Williams, D.A. (2000). Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry. Journal of Neuroscience 20, 20432053.
Mollon, J.D. (2003). The origins of modern color science. In The Science of Color, ed. Shevell, S.K., pp. 139. Amsterdam, The Netherlands: Elsevier.
Mollon, J.D., Bowmaker, J.K. & Jacobs, G.H. (1984). Variations of colour vision in a New World primate can be explained by polymorphism of retinal photopigments. Proceedings of the Royal Society of London B 222, 373399.
Müller, B. & Peichl, L. (1989). Topography of cones and rods in the tree shrew retina. Journal of Comparative Neurology 282, 581594.
Nathans, J., Thomas, D. & Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green and red pigments. Science 232, 193202.
Neitz, M. & Neitz, J. (2003). Molecular genetics of human color vision and color vision defects. In The Visual Neurosciences, Vol. 2, ed. Chalupa, L.M. & Werner, J.S., pp. 974988. Cambridge, MA: MIT Press.
Neitz, M., Neitz, J. & Jacobs, G.H. (1991). Spectral tuning of pigments underlying red-green color vision. Science 252, 971974.
Ni, X., Wang, Y., Hu, Y. & Li, C. (2003). A euprimate skull from the early Eocene of China. Nature 427, 6568.
Onishi, A., Hasegawa, J., Imai, H., Chisaka, O., Ueda, Y., Honda, Y., Tachibana, M. & Shichida, Y. (2005). Generation of knock-in mice carrying third cones with spectral sensitivity different from S and L cones. Zoological Science 22, 11451156.
Onishi, A., Koike, S., Ida, M., Imai, H., Schichida, Y., Osamu, T., Hanazawa, A.Konatsu, H., Mikami, A., Goto, S., Suryobroto, B., Kitahara, K. & Yamamori, T. (1999). Dichromatism in macaque monkeys. Nature 402, 139140.
Osorio, D., Smith, A.C., Vorobyev, M. & Buchanan-Smith, H.M. (2004). Detection of fruit and the selection of primate visual pigments for color vision. American Naturalist 164, 696708.
Peichl, L. (2005). Diversity of mammalian photoreceptor properties: Adaptations to habitat and lifestyle? Anatomical Record A 287A, 10011012.
Perry, G.H., Martin, R.D. & Verelli, B.C. (2007). Signatures of functional constraint at aye-aye opsin genes: The potential of adaptive color vision in a nocturnal primate. Molecular Biology and Evolution 24, 19631970.
Post, R.H. (1962). Population differences in red and green color vision deficiency: A review, and query on selection relaxation. Eugenics Quarterly 9, 131146.
Regan, B.C., Julliot, C., Simmen, B., Vienot, F., Charles-Dominique, P. & Mollon, J.D. (2001). Fruits, foliage and the evolution of primate colour vision. Philosophical Transactions of the Royal Society of London B 356, 229283.
Ross, C.F. & Martin, R.D. (2007). The role of vision in the origin and evolution of primates. In Evolution of Nervous Systems. Vol. 4: The Evolution of Primate Nervous Systems, ed. Preuss, T.M. & Kaas, J., pp. 5978. Oxford: Elsevier.
Sagdullaev, B.T. & McCall, M.A. (2005). Stimulus size and intensity alter fundamental receptive field properties of mouse retinal ganglion cells in vivo. Visual Neuroscience 22, 649659.
Saito, C.A., da Silva-Filho, M., Lee, B.B., Bowmaker, J.K., Kremers, J. & Silveira, L.C.L. (2004). Alouatta trichromatic color vision—Single-unit recording from retinal ganglion cells and micro spectrophotometry. Investigative Ophthalmology and Visual Science 45, E-abstract 4276.
Schmitz, J., Ohme, M. & Zischler, H. (2001). SINE insertions in cladistic analyses and the phylogenetic affiliations of Tarsius bancanus to other primates. Genetics 157, 777784.
Schrago, C.G. (2007). On the time scale of New World primate diversification. American Journal of Physical Anthropology 132, 344354.
Seiffert, E.R., Simons, E.L., Clyde, W.C., Rossie, J.B., Attia, Y., Brown, T.M., Chatrath, P. & Mathison, M.E. (2005). Basal anthropoids from Egypt and the antiquity of Africa's higher primate radiation. Science 310, 300304.
Shaaban, S.A., Crognale, M.A., Calderone, J.B., Huang, J., Jacobs, G.H. & Deeb, S.S. (1998). Transgenic mice expressing a functional human photopigment. Investigative Ophthalmology and Visual Science 39, 10361043.
Silveira, L.C.L., Lee, B.B., Yamada, E.S., Kremers, J., Hunt, D.M., Martin, P.R. & Gomes, F.L. (1999). Ganglion cells of short-wavelength-sensitive pathway in New World monkeys: Morphology and physiology. Visual Neuroscience 16, 333343.
Silveira, L.C.L., Saito, C.A., Lee, B.B., Kremers, J., Filho, M.S., Kilavik, B.E., Yamada, E.S. & Perry, V.H. (2004). Morphology and physiology of primate M- and P-cells. In The Roots of Visual Awareness, ed. Heywood, C.A., Milner, A.D. & Blakemore, C., pp. 2146. Amsterdam, The Netherlands: Elsevier.
Smallwood, P.M., Olveczky, B.P., Williams, G.A., Jacobs, G.H., Reese, B.E., Meister, M. & Nathans, J. (2003). Genetically engineered mice with an additional class of cone photoreceptors: Implications for the evolution of color vision. Proceedings of the National Academy of Sciences U S A 100, 1170611711.
Smallwood, P.M., Wang, Y. & Nathans, J. (2002). Role of a locus control region in the mutually exclusive expression of human red and green cone pigment genes. Proceedings of the National Academy of Sciences U S A 99, 10081011.
Smith, V.C. & Pokorny, J. (1977). Large-field trichromacy in protanopes and deuteranopes. Journal of the Optical Society of America 67, 213220.
Smith, V.C. & Pokorny, J. (2003). Color matching and color discrimination. In The Science of Color, ed. Shevell, S.K., pp. 103148. Amsterdam, The Netherlands: Elsevier.
Solomon, S.G. & Lennie, P. (2007). The machinery of colour vision. Nature Neuroscience Reviews 8, 276286.
Steiper, M.E. & Young, N.M. (2006). Primate molecular divergence dates. Molecular Phylogenetics and Evolution 41, 384394.
Surridge, A.K. & Mundy, N.I. (2002). Trans-specific evolution of opsin alleles and the maintenance of trichromatic colour vision in callitrichine primates. Molecular Ecology 11, 21572169.
Tan, Y. & Li, W.-H. (1999). Trichromatic vision in prosimians. Nature 402, 36.
Tan, Y., Yoder, A.D., Yamashita, N. & Li, W.-H. (2005). Evidence from opsin genes rejects nocturnality in ancestral primates. Proceedings of the National Academy of Sciences U S A 41, 1471214716.
Tattersal, I. (2006). The concept of cathemerality: History and definition. Folia Primatologica 77, 714.
Vorobyev, M. (2004). Ecology and evolution of primate colour vision. Clinical and Experimental Optometry 87, 230238.
Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, MI: Cranbrook Institute of Science.
Wang, Y., Macke, J.P., Merbs, S.L., Zack, D.J., Klaunberg, B., Bennett, J., Gearhart, J. & Nathans, J. (1992). A locus control region adjacent to the human red and green visual pigment genes. Neuron 9, 429440.
Wässle, H. (2004). Parallel processing in the mammalian retina. Nature Neuroscience 19, 747757.
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, 447480.
Wyszecki, G. & Stiles, W.S. (1982). Color Science. New York: Wiley.
Yamada, E.S., Marshak, D.W., Silveira, L.C.L. & Casagrande, V.A. (1998). Morphology of P and M retinal ganglion cells of the bush baby. Vision Research 38, 33453352.
Yeh, T., Lee, B.B., Kremers, J., Cowing, J.A., Hunt, D.M., Martin, P.R. & Troy, J.B. (1995). Visual responses in the lateral geniculate nucleus of dichromatic and trichromatic marmosets (Callithrix jacchus). Journal of Neuroscience 15, 78927904.
Yokoyama, S. (2000). Molecular evolution of vertebrate visual pigments. Progress in Retinal and Eye Research 19, 385419.
Yokoyama, S. & Radlwimmer, F.B. (1999). The molecular genetics of red and green color vision in mammals. Genetics 153, 919932.
Zhang, J. (2003). Evolution by gene duplication: An update. Trends in Ecology and Evolution 18, 292298.a

Keywords

Primate color vision: A comparative perspective

  • GERALD H. JACOBS (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed