Skip to main content Accessibility help

Perceptual classification of chromatic modulation

  • ROMAIN BOUET (a1) (a2) and KENNETH KNOBLAUCH (a1) (a2)


We measured the regions of the equiluminant plane that are exploited by observers during a Yes/No detection task. The signal was a 640-ms Gaussian modulation (σt = 160 ms) of a Gaussian spatial patch (σs = 2.4 deg) presented in chromatically bivariate uniform noise. One component of the noise was along the direction axial with the signal in color space, the other perpendicular. Four signal directions were tested: along cardinal LM and S axes and two intermediate directions to which the cardinal axes were equally sensitive. The distribution of noise chromaticities from each trial was correlated with the observers' responses and the presence and absence of the signal to build a classification image of the distribution of chromaticities on which the decision of the observer was based. The images show a narrowly selective peak in the signal direction flanked by regions with a broader selectivity. These results raise the possibility that detection judgments are mediated by both linear and nonlinear mechanisms with peak sensitivities between the cardinal directions.


Corresponding author

Address correspondence and reprint requests to: Kenneth Knoblauch, Inserm U371, Cerveau et Vision, 18 avenue du Doyen Lépine, 69675 Bron cedex, France. E-mail:


Hide All


Ahumada, A.J. (2002). Classification image weights and internal noise level estimation. Journal of Vision 2, 121131.
Ahumada, A.J. & Lovell, J. (1971). Stimulus features in signal detection, Journal of the Acoustical Society of America 49, 17511756.
Bouet, R. & Knoblauch, K. (2003). Spectral bandwidths of colour detection mechanisms revisited. Perception, 32 (Suppl.), 3940.
Cardinal, K.S. & Kiper, D.C. (2003). The detection of colored Glass spatterns. Journal of Vision 3(3), 199208.
Dacey, D.M. & Lee, B.B. (1994). The “blue-on” opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.
Dartnall, H.J.A., Bowmaker, J.K., & Mollon, J.D. (1983). Human visual pigments: Microspectrophotometric results from the eyes of seven persons. Proceedings of the Royal Society B (London) 220, 115130.
Derrington, A.M., Krauskopf, J., & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. Journal of Physiology 357, 241265.
DeValois, R.L., Abramov, I., & Jacobs, G.H. (1966). Analysis of of response patterns of LGN cells. Journal of the Optical Society of America 56, 966977.
DeValois, R.L., Cottaris, N.P., Elfar, S.D., Mahon, L.E., & Wilson, J.A. (2000). Some transformations of color information from lateral geniculate nucleus to striate cortex. Proceedings of the National Academy of Sciences of the U.S.A. 97, 49975002.
D'Zmura, M. (1991). Color in visual search. Vision Research 31, 951966.
D'Zmura, M. & Knoblauch, K. (1998). Spectral bandwidths for the detection of color. Vision Research 38, 31173128.
Eskew, R.T., Jr., Newton, J.R., & Giulianini, F. (2001). Chromatic detection and discrimination analyzed by a Bayesian classifier. Vision Research 41, 893909.
Gegenfurtner, K.R. & Kiper, D.C. (1992). Contrast detection in luminance and chromatic noise. Journal of Optical Society of America A 9, 18801888.
Giulianini, F. & Eskew, R.T., Jr. (1998). Chromatic masking in the (ΔL/L, ΔM/M) plane of cone-contrast space reveals only two detection mechanisms. Vision Research 38, 39133926.
Goda, N. & Fuji, M. (2001). Sensitivity to modulation of color distribution in multicolored textures. Vision Research 41, 24752485.
Hansen, T. & Gegenfurtner, K. (2003). Classification images for chromatic signal detection. Perception 32 (Suppl.), 40.
Hays, W.L. (1973). Statistics for the Social Sciences, 2nd edition. New York: Holt, Rinehart and Winston.
Kaiser, P. & Boynton, R.M. (1996). Human Color Vision, 2nd edition. Washington, DC: Optical Society of America.
Kiper, D.C., Fenstemaker, S.B., & Gegenfurtner, K.R. (1997). Chromatic properties of neurons in macaque area V2. Visual Neuroscience 14, 10611072.
Knoblauch, K. (2002). Color Vision. In Yantis, S. (volume editor) and Pashler, H. (series editor), Stevens' Handbook of Experimental Psychology, 3rd edition, New York: Wiley.
Krauskopf, J., Williams, D.R., & Heeley, D.W. (1982). Cardinal directions in color space. Vision Research 22, 11231131.
Krauskopf, J., Williams, D.R., Mandler, M.B., & Brown, A.M. (1986). Higher order color mechanisms. Vision Research 26, 2332.
Lennie, P., Krauskopf, J., & Sklar, G. (1990). Chromatic mechanisms in striate cortex of macaque. Journal of Neuroscience 10, 649669.
MacLeod, D.I.A. & Boynton, R.M. (1979). Chromaticity diagram showing cone excitation by stimuli of equal luminance. Journal of the Optical Society of America 69, 11831186.
Monaci, G., Menegaz, G., Süsstrunck, S., & Knoblauch K. (2004). Chromatic contrast detection in spatial chromatic noise. Visual Neuroscience 21, 291294.
Nathans, J., Thomas, D., & Hogness, D.S. (1986). Molecular genetics of human color vision: The genes encoding blue, green and red pigments. Science 232, 193202.
Sankeralli, M.J. & Mullen, K.T. (1997). Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space. Journal of the Optical Society of America A 14, 26332646.
Schnapf, J.L., Kraft, T.W., & Baylor, D.A. (1987). Spectral sensitivity of human cone photoreceptors. Nature 325, 439441.
Shapley, R. (1990) Visual sensitivity and parallel retinocortical channels. Annual Review of Psychology 41, 635658.
Stiles, W.S. (1953). Further studies of visual mechanisms by the two-colour threshold method. Reprinted from Colloq. Probl. Opt. Vis., (U.I.P.A.P., Madrid, Vol. 1, 1953, pp. 65–103) in Mechanisms of Colour Vision, Selected Papers of W.S. Stiles, F.R.S. with a new introductory essay. Academic Press, London (1978).
Webster, M.A. & Mollon, J.D. (1994). The influence of contrast adaptation on color appearance. Vision Research 34, 19932020.
Wyszecki, G. & Stiles, W.S. (1982). Color Science: Concepts and Methods, Quantitative Data and Formulae. New York: Wiley.
Zeki, S. (1980). The representation of colour in the cerebral cortex. Nature 284, 412418.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed